BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34613097)

  • 1. Stereoscopic particle image velocimetry in inhomogeneous refractive index fields of combustion flows.
    Vanselow C; Hoppe O; Stöbener D; Fischer A
    Appl Opt; 2021 Oct; 60(28):8716-8727. PubMed ID: 34613097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry.
    Westerdale J; Belohlavek M; McMahon EM; Jiamsripong P; Heys JJ; Milano M
    J Ultrasound Med; 2011 Feb; 30(2):187-95. PubMed ID: 21266556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of 4D Flow MRI and Particle Image Velocimetry Using an In Vitro Carotid Bifurcation Model.
    Medero R; Hoffman C; Roldán-Alzate A
    Ann Biomed Eng; 2018 Dec; 46(12):2112-2122. PubMed ID: 30112708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature measurements in steady axisymmetric partially premixed flames by use of rainbow schlieren deflectometry.
    Xiao X; Puri IK; Agrawal AK
    Appl Opt; 2002 Apr; 41(10):1922-8. PubMed ID: 11936791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 20 kHz dual-plane stereo-PIV measurements on a swirling flame using a two-legged burst-mode laser.
    Yang Z; Wang S; Zheng J; Li L; Liu X; Gao Y; Qi F
    Opt Lett; 2020 Oct; 45(20):5756-5759. PubMed ID: 33057277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of tomographic PIV uncertainty using controlled experimental measurements.
    Liu N; Wu Y; Ma L
    Appl Opt; 2018 Jan; 57(3):420-427. PubMed ID: 29400791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic errors in optical-flow velocimetry for turbulent flows and flames.
    Fielding J; Long MB; Fielding G; Komiyama M
    Appl Opt; 2001 Feb; 40(6):757-64. PubMed ID: 18357055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD.
    Roloff C; Stucht D; Beuing O; Berg P
    J Neurointerv Surg; 2019 Mar; 11(3):275-282. PubMed ID: 30061369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regularized tomographic PIV for incompressible flows based on conservation of mass.
    Liu N; Ma L
    Appl Opt; 2020 Feb; 59(6):1667-1677. PubMed ID: 32225672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smartphone-based particle image velocimetry for cardiovascular flows applications: A focus on coronary arteries.
    Caridi GCA; Torta E; Mazzi V; Chiastra C; Audenino AL; Morbiducci U; Gallo D
    Front Bioeng Biotechnol; 2022; 10():1011806. PubMed ID: 36568311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature and velocity measurement fields of fluids using a schlieren system.
    Martínez-González A; Guerrero-Viramontes JA; Moreno-Hernández D
    Appl Opt; 2012 Jun; 51(16):3519-25. PubMed ID: 22695589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.
    Lee SJ; Park HW; Jung SY
    J Synchrotron Radiat; 2014 Sep; 21(Pt 5):1160-6. PubMed ID: 25178007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of measurement accuracy of X-ray PIV in comparison with the micro-PIV technique.
    Park H; Jung SY; Park JH; Kim JH; Lee SJ
    J Synchrotron Radiat; 2018 Mar; 25(Pt 2):552-559. PubMed ID: 29488936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro validation of flow measurement with phase contrast MRI at 3 tesla using stereoscopic particle image velocimetry and stereoscopic particle image velocimetry-based computational fluid dynamics.
    Khodarahmi I; Shakeri M; Kotys-Traughber M; Fischer S; Sharp MK; Amini AA
    J Magn Reson Imaging; 2014 Jun; 39(6):1477-85. PubMed ID: 24123721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Measurement of Turbulence and Particle Kinematics Using Flow Imaging Techniques.
    Hackett EE; Gurka R
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30933053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High dynamic velocity range particle image velocimetry using multiple pulse separation imaging.
    Persoons T; O'Donovan TS
    Sensors (Basel); 2011; 11(1):1-18. PubMed ID: 22346564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flame front detection and characterization using conditioned particle image velocimetry (CPIV).
    Pfadler S; Beyrau F; Leipertz A
    Opt Express; 2007 Nov; 15(23):15444-56. PubMed ID: 19550830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smartphone-based particle tracking velocimetry for the in vitro assessment of coronary flows.
    Torta E; Griffo B; Caridi GCA; De Nisco G; Chiastra C; Morbiducci U; Gallo D
    Med Eng Phys; 2024 Apr; 126():104144. PubMed ID: 38621846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed particle image velocimetry near surfaces.
    Lu L; Sick V
    J Vis Exp; 2013 Jun; (76):. PubMed ID: 23851899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.