These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34613244)

  • 1. High-efficiency smooth pseudo-random path planning for restraining the path ripple of robotic polishing.
    Li H; Li X; Wan S; Wei C; Shao J
    Appl Opt; 2021 Sep; 60(25):7732-7739. PubMed ID: 34613244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparse bi-step raster path for suppressing the mid-spatial-frequency error by fluid jet polishing.
    Wan K; Wan S; Jiang C; Wei C; Shao J
    Opt Express; 2022 Feb; 30(5):6603-6616. PubMed ID: 35299441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Six-directional pseudorandom consecutive unicursal polishing path for suppressing mid-spatial frequency error and realizing consecutive uniform coverage.
    Zhao Q; Zhang L; Fan C
    Appl Opt; 2019 Nov; 58(31):8529-8541. PubMed ID: 31873338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface ripple suppression in subaperture polishing with fragment-type tool paths.
    Dong Z; Nai W
    Appl Opt; 2018 Jul; 57(19):5523-5532. PubMed ID: 30117848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of mid-spatial-frequency waviness by a universal random tree-shaped path in robotic bonnet polishing.
    Wang C; Han Y; Zhang H; Liu C; Jiang L; Qian L
    Opt Express; 2022 Aug; 30(16):29216-29233. PubMed ID: 36299101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces.
    He Z; Hai K; Li K; Yu J; Wu L; Zhang L; Su X; Cai L; Huang W; Hang W
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unicursal random maze tool path for computer-controlled optical surfacing.
    Wang C; Wang Z; Xu Q
    Appl Opt; 2015 Dec; 54(34):10128-36. PubMed ID: 26836670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and analysis of the mid-spatial- frequency error characteristics and generation mechanism in sub-aperture optical polishing.
    Wan S; Wei C; Hong Z; Shao J
    Opt Express; 2020 Mar; 28(6):8959-8973. PubMed ID: 32225511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restraint of the mid-spatial frequency error on optical surfaces by multi-jet polishing.
    Zhang Z; Cheung CF; Wang C; Ho LT; Guo J
    Opt Express; 2022 Dec; 30(26):46307-46323. PubMed ID: 36558588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Region-adaptive path planning for precision optical polishing with industrial robots.
    Wan S; Zhang X; Xu M; Wang W; Jiang X
    Opt Express; 2018 Sep; 26(18):23782-23795. PubMed ID: 30184874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and in-depth analysis of the mid-spatial-frequency error influenced by actual contact pressure distribution in sub-aperture polishing.
    Zhang L; Wan S; Li H; Guo H; Wei C; Zhang D; Shao J
    Opt Express; 2023 Apr; 31(9):14414-14431. PubMed ID: 37157306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategy of restraining ripple error on surface for optical fabrication.
    Wang T; Cheng H; Feng Y; Tam H
    Appl Opt; 2014 Sep; 53(26):6058-65. PubMed ID: 25321688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudo-random tool paths for CNC sub-aperture polishing and other applications.
    Dunn CR; Walker DD
    Opt Express; 2008 Nov; 16(23):18942-9. PubMed ID: 19581985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-rotor tool path generation and removal error analysis in active feed polishing.
    Wang S; Liu J; Zhang L
    Appl Opt; 2013 Oct; 52(28):6948-55. PubMed ID: 24085209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified dwell time optimization model and its applications in subaperture polishing.
    Dong Z; Cheng H; Tam HY
    Appl Opt; 2014 May; 53(15):3213-24. PubMed ID: 24922206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of mid-spatial frequency errors on aspheric and freeform optics by circular-random path polishing.
    Beaucamp A; Takizawa K; Han Y; Zhu W
    Opt Express; 2021 Sep; 29(19):29802-29812. PubMed ID: 34614718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an Improved RRT Algorithm.
    Wei K; Ren B
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peano-like paths for subaperture polishing of optical aspherical surfaces.
    Tam HY; Cheng H; Dong Z
    Appl Opt; 2013 May; 52(15):3624-36. PubMed ID: 23736249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corrective finishing of a micro-aspheric mold made of tungsten carbide to 50  nm accuracy.
    Guo J
    Appl Opt; 2015 Jun; 54(18):5764-70. PubMed ID: 26193027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudo-random Path Generation Algorithms and Strategies for the Surface Quality Improvement of Optical Aspherical Components.
    Zha J; Zhang H; Li Y; Chen Y
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.