These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 34613510)
1. Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR). Tirry N; Kouchou A; El Omari B; Ferioun M; El Ghachtouli N J Genet Eng Biotechnol; 2021 Oct; 19(1):149. PubMed ID: 34613510 [TBL] [Abstract][Full Text] [Related]
2. Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress. Karthik C; Elangovan N; Kumar TS; Govindharaju S; Barathi S; Oves M; Arulselvi PI Microbiol Res; 2017 Nov; 204():65-71. PubMed ID: 28870293 [TBL] [Abstract][Full Text] [Related]
3. Role of Akhtar N; Ilyas N; Yasmin H; Sayyed RZ; Hasnain Z; A Elsayed E; El Enshasy HA Molecules; 2021 Mar; 26(6):. PubMed ID: 33809305 [TBL] [Abstract][Full Text] [Related]
4. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012 [TBL] [Abstract][Full Text] [Related]
5. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Dey R; Pal KK; Bhatt DM; Chauhan SM Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384 [TBL] [Abstract][Full Text] [Related]
6. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Ju W; Liu L; Jin X; Duan C; Cui Y; Wang J; Ma D; Zhao W; Wang Y; Fang L Chemosphere; 2020 Sep; 254():126724. PubMed ID: 32334248 [TBL] [Abstract][Full Text] [Related]
7. Hexavalent chromium-reducing plant growth-promoting rhizobacteria are utilized to bio-fortify trivalent chromium in fenugreek by promoting plant development and decreasing the toxicity of hexavalent chromium in the soil. Soni SK; Kumar G; Bajpai A; Singh R; Bajapi Y; Laxmi ; Tiwari S J Trace Elem Med Biol; 2023 Mar; 76():127116. PubMed ID: 36481602 [TBL] [Abstract][Full Text] [Related]
8. Potential of efficient and resistant plant growth-promoting rhizobacteria in lead uptake and plant defence stimulation in Lathyrus sativus under lead stress. Abdelkrim S; Jebara SH; Saadani O; Jebara M Plant Biol (Stuttg); 2018 Sep; 20(5):857-869. PubMed ID: 29907996 [TBL] [Abstract][Full Text] [Related]
10. [Effect of Cr(VI) stress on growth of three herbaceous plants and their Cr uptake]. Wang AY; Huang SS; Zhong GF; Xu GB; Liu ZX; Shen XB Huan Jing Ke Xue; 2012 Jun; 33(6):2028-37. PubMed ID: 22946192 [TBL] [Abstract][Full Text] [Related]
11. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Hassan W; Bano R; Bashir F; David J Environ Sci Pollut Res Int; 2014 Sep; 21(18):10983-96. PubMed ID: 24888619 [TBL] [Abstract][Full Text] [Related]
12. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. He X; Xu M; Wei Q; Tang M; Guan L; Lou L; Xu X; Hu Z; Chen Y; Shen Z; Xia Y Ecotoxicol Environ Saf; 2020 Dec; 205():111333. PubMed ID: 32979802 [TBL] [Abstract][Full Text] [Related]
13. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Sapre S; Gontia-Mishra I; Tiwari S Microbiol Res; 2018 Jan; 206():25-32. PubMed ID: 29146257 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic elucidation of germination potential and growth of Sesbania sesban seedlings with Bacillus anthracis PM21 under heavy metals stress: An in vitro study. Ali J; Ali F; Ahmad I; Rafique M; Munis MFH; Hassan SW; Sultan T; Iftikhar M; Chaudhary HJ Ecotoxicol Environ Saf; 2021 Jan; 208():111769. PubMed ID: 33396087 [TBL] [Abstract][Full Text] [Related]
15. Bioaugmented Phytoremediation of Metal-Contaminated Soils and Sediments by Hemp and Giant Reed. Ferrarini A; Fracasso A; Spini G; Fornasier F; Taskin E; Fontanella MC; Beone GM; Amaducci S; Puglisi E Front Microbiol; 2021; 12():645893. PubMed ID: 33959108 [TBL] [Abstract][Full Text] [Related]
16. Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. Ke T; Guo G; Liu J; Zhang C; Tao Y; Wang P; Xu Y; Chen L Environ Pollut; 2021 Feb; 271():116314. PubMed ID: 33360656 [TBL] [Abstract][Full Text] [Related]
17. Screening of plant growth promoting traits in heavy metals resistant bacteria: Prospects in phytoremediation. Tirry N; Tahri Joutey N; Sayel H; Kouchou A; Bahafid W; Asri M; El Ghachtouli N J Genet Eng Biotechnol; 2018 Dec; 16(2):613-619. PubMed ID: 30733780 [TBL] [Abstract][Full Text] [Related]
18. The influences of Cr-tolerant rhizobacteria in phytoremediation and attenuation of Cr (VI) stress in agronomic sunflower (Helianthus annuus L.). Bahadur A; Ahmad R; Afzal A; Feng H; Suthar V; Batool A; Khan A; Mahmood-Ul-Hassan M Chemosphere; 2017 Jul; 179():112-119. PubMed ID: 28364646 [TBL] [Abstract][Full Text] [Related]
19. Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils. Saif S; Khan MS Environ Monit Assess; 2018 Apr; 190(5):290. PubMed ID: 29666936 [TBL] [Abstract][Full Text] [Related]
20. Exploring the synergistic effect of chromium (Cr) tolerant Komal ; Shabaan M; Ali Q; Asghar HN; Zahir ZA; Yousaf K; Aslam N; Zulfiqar U; Ejaz M; Alwahibi MS; Ali MA Int J Phytoremediation; 2024; 26(9):1474-1485. PubMed ID: 38488053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]