These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 34613619)

  • 1. Design of Quasi-MOF Nanospheres as a Dynamic Electrocatalyst toward Accelerated Sulfur Reduction Reaction for High-Performance Lithium-Sulfur Batteries.
    Luo D; Li C; Zhang Y; Ma Q; Ma C; Nie Y; Li M; Weng X; Huang R; Zhao Y; Shui L; Wang X; Chen Z
    Adv Mater; 2022 Jan; 34(2):e2105541. PubMed ID: 34613619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pristine MOF Materials for Separator Application in Lithium-Sulfur Battery.
    Cheng Z; Lian J; Zhang J; Xiang S; Chen B; Zhang Z
    Adv Sci (Weinh); 2024 Jun; ():e2404834. PubMed ID: 38894547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal Organic Frameworks as Polysulfide Reaction Modulators for Lithium Sulfur Batteries: Advances and Perspectives.
    Fan X; Zhang Y; Peng R; Liang Z; Zhou X; Luo X; Chen R; Li P; Yu D
    Chemphyschem; 2024 Jul; 25(13):e202400239. PubMed ID: 38578164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Balanced Mass Transfer and Active Sites Density in Hierarchical Porous Catalytic Metal-Organic Framework for Enhancing Redox Reaction in Lithium-Sulfur Batteries.
    Xie L; Xiao Y; Zeng Q; Wang Y; Weng J; Lu H; Rong J; Yang J; Zheng C; Zhang Q; Huang S
    ACS Nano; 2024 May; 18(20):12820-12829. PubMed ID: 38722145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dually Sulphophilic Chromium Boride Nanocatalyst Boosting Sulfur Conversion Kinetics Toward High-Performance Lithium-Sulfur Batteries.
    Li H; Chen G; Zhang K; Wang L; Li G
    Adv Sci (Weinh); 2023 Nov; 10(32):e2303830. PubMed ID: 37747263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries.
    Zhou C; Li Z; Xu X; Mai L
    Natl Sci Rev; 2021 Dec; 8(12):nwab055. PubMed ID: 34987837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal Engineering of Catalytic Interfaces Confers Multi-Site Metal-Organic Framework for Internal Preconcentration and Accelerating Redox Kinetics in Lithium-Sulfur Batteries.
    Lu H; Zeng Q; Xu L; Xiao Y; Xie L; Yang J; Rong J; Weng J; Zheng C; Zhang Q; Huang S
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202318859. PubMed ID: 38179841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress and Prospect of Organic Electrocatalysts in Lithium-Sulfur Batteries.
    Dong Y; Li T; Cai D; Yang S; Zhou X; Nie H; Yang Z
    Front Chem; 2021; 9():703354. PubMed ID: 34336789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent progress and perspectives on metal-organic frameworks as solid-state electrolytes for lithium batteries.
    Wang X; Jin S; Liu Z
    Chem Commun (Camb); 2024 May; 60(41):5369-5390. PubMed ID: 38687504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SnS/SnS
    Ma Y; Li F; Ji H; Wu H; Wang B; Ren Y; Cao J; Cao X; Ding F; Lu J; Yang X; Meng X
    Langmuir; 2024 Mar; 40(10):5527-5534. PubMed ID: 38408350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalytic Mechanism and Sabatier Principle in C
    Chen X; Lv H; Wu X
    J Phys Chem Lett; 2024 Mar; 15(12):3425-3433. PubMed ID: 38506831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Phosphorization for Constructing Ni
    Du M; Geng P; Feng W; Xu H; Li B; Pang H
    Small; 2024 Jun; ():e2401587. PubMed ID: 38855999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zwitterionic Covalent Organic Framework Based Electrostatic Field Electrocatalysts for Durable Lithium-Sulfur Batteries.
    Cao Y; Zhang Y; Han C; Liu S; Zhang S; Liu X; Zhang B; Pan F; Sun J
    ACS Nano; 2023 Nov; 17(22):22632-22641. PubMed ID: 37933557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous Organic Framework Materials (MOF, COF, and HOF) as the Multifunctional Separator for Rechargeable Lithium Metal Batteries.
    Yang Y; Sun Z; Wu Y; Liang Z; Li F; Zhu M; Liu J
    Small; 2024 May; ():e2401457. PubMed ID: 38733086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orbital Coupling of PbO
    Zhou Y; Gu Q; Xin Y; Tang X; Wu H; Guo S
    Nano Lett; 2023 Nov; 23(22):10600-10607. PubMed ID: 37942960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-organic frameworks for high-performance cathodes in batteries.
    Lee J; Choi I; Kim E; Park J; Nam KW
    iScience; 2024 Jul; 27(7):110211. PubMed ID: 39021798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study on the superconductivity of graphene-like TMB
    Liu S; Huang R; Hou J; Duan Q
    Phys Chem Chem Phys; 2023 Nov; 25(42):29182-29191. PubMed ID: 37870596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Optical and Energetic Properties of a Co(II)-Based Mixed Ligand MOF.
    Abid D; Mjejri I; Jaballi R; Guionneau P; Pechev S; Hlil EK; Daro N; Elaoud Z
    Inorg Chem; 2024 Apr; 63(14):6152-6160. PubMed ID: 38551110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting Lean Electrolyte Lithium-Sulfur Battery Performance with Transition Metals: A Comprehensive Review.
    Pan H; Cheng Z; Zhou Z; Xie S; Zhang W; Han N; Guo W; Fransaer J; Luo J; Cabot A; Wübbenhorst M
    Nanomicro Lett; 2023 Jun; 15(1):165. PubMed ID: 37386313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling Polysulfide's Adsorption and Electrocatalytic Conversion on Metal Oxides for Li-S Batteries.
    Deng S; Guo T; Heier J; Zhang CJ
    Adv Sci (Weinh); 2023 Feb; 10(5):e2204930. PubMed ID: 36507567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.