BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34613705)

  • 1. Superlithiation Performance of Covalent Triazine Frameworks as Anodes in Lithium-Ion Batteries.
    Jiang F; Wang Y; Qiu T; Zhang Y; Zhu W; Yang C; Huang J; Fang Z; Dai G
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48818-48827. PubMed ID: 34613705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Few-Layered Fluorinated Triazine-Based Covalent Organic Nanosheets for High-Performance Alkali Organic Batteries.
    Zhang H; Sun W; Chen X; Wang Y
    ACS Nano; 2019 Dec; 13(12):14252-14261. PubMed ID: 31794178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superlithiation Performance of Pyridinium Polymerized Ionic Liquids with Fast Li
    Wang Y; Yang G; Wang G; Min Y; Zhou L; Yang C; Huang J; Dai G
    Small; 2023 Sep; 19(39):e2302811. PubMed ID: 37194977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Synthesis of a Covalent Organic Framework from Thiophene Armed Triazine and EDOT and Its Application as Anode Material in Lithium-Ion Battery.
    Chen S; Wang S; Xue X; Zhao J; Du H
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. .Boosting lithium storage in covalent triazine framework for symmetric all-organic lithium-ion batteries by regulating the degree of spatial distortion.
    Ren L; Lian L; Zhang X; Liu Y; Han D; Yang S; Wang HG
    J Colloid Interface Sci; 2024 Apr; 660():1039-1047. PubMed ID: 38199891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox of Dual-Radical Intermediates in a Methylene-Linked Covalent Triazine Framework for High-Performance Lithium-Ion Batteries.
    Wang Z; Gu S; Cao L; Kong L; Wang Z; Qin N; Li M; Luo W; Chen J; Wu S; Liu G; Yuan H; Bai Y; Zhang K; Lu Z
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):514-521. PubMed ID: 33326203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guiding Uniformly Distributed Li-Ion Flux by Lithiophilic Covalent Organic Framework Interlayers for High-Performance Lithium Metal Anodes.
    Li Z; Ji W; Wang TX; Zhang Y; Li Z; Ding X; Han BH; Feng W
    ACS Appl Mater Interfaces; 2021 May; 13(19):22586-22596. PubMed ID: 33951910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergetic Covalent and Spatial Confinement of Sulfur Species by Phthalazinone-Containing Covalent Triazine Frameworks for Ultrahigh Performance of Li-S Batteries.
    Guan R; Zhong L; Wang S; Han D; Xiao M; Sun L; Meng Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8296-8305. PubMed ID: 31985210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bipolar fluorinated covalent triazine framework cathode with high lithium storage and long cycling capability.
    Chen X; Zhang H; Yan P; Liu B; Cao X; Zhan C; Wang Y; Liu JH
    RSC Adv; 2022 Apr; 12(18):11484-11491. PubMed ID: 35425080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elemental-Sulfur-Mediated Facile Synthesis of a Covalent Triazine Framework for High-Performance Lithium-Sulfur Batteries.
    Talapaneni SN; Hwang TH; Je SH; Buyukcakir O; Choi JW; Coskun A
    Angew Chem Int Ed Engl; 2016 Feb; 55(9):3106-11. PubMed ID: 26822950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent Triazine Frameworks and Porous Carbons: Perspective from an Azulene-Based Case.
    Jiang K; Peng P; Tranca D; Tong G; Ke C; Lu C; Hu J; Liang H; Li J; Zhou S; Kymakis E; Zhuang X
    Macromol Rapid Commun; 2022 Oct; 43(20):e2200392. PubMed ID: 35678742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layered S-Bridged Covalent Triazine Frameworks via a Bifunctional Template-Catalytic Strategy Enabling High-Performance Zinc-Ion Hybrid Supercapacitors.
    Liu B; Qian Y; Zhang J; Yang M; Liu Y; Zhang S
    Small; 2024 Feb; ():e2310884. PubMed ID: 38376170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Design of Porous Covalent Triazine-Based Framework Composites as Advanced Organic Lithium-Ion Battery Cathodes.
    Yuan R; Kang W; Zhang C
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29865220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyanthraquinone-Triazine-A Promising Anode Material for High-Energy Lithium-Ion Batteries.
    Kang H; Liu H; Li C; Sun L; Zhang C; Gao H; Yin J; Yang B; You Y; Jiang KC; Long H; Xin S
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37023-37030. PubMed ID: 30299921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of Fluorine- and Piperazine-Engineered Covalent Triazine Frameworks Towards Enhanced Dual-Ion Positive Electrode Performance.
    Wang T; Gaugler JA; Li M; Thapaliya BP; Fan J; Qiu L; Moitra D; Kobayashi T; Popovs I; Yang Z; Dai S
    ChemSusChem; 2023 Feb; 16(4):e202201219. PubMed ID: 35996839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalized germanane/SWCNT hybrid films as flexible anodes for lithium-ion batteries.
    Wu B; Šturala J; Veselý M; Hartman T; Kovalska E; Bouša D; Luxa J; Azadmanjiri J; Sofer Z
    Nanoscale Adv; 2021 Jul; 3(15):4440-4446. PubMed ID: 36133472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphite-like structured conductive polymer anodes for high-capacity lithium storage with optimized voltage platform.
    Mao P; Fan H; Zhou G; Arandiyan H; Liu C; Lan G; Wang Y; Zheng R; Wang Z; Bhargava SK; Sun H; Liu Y
    J Colloid Interface Sci; 2023 Mar; 634():63-73. PubMed ID: 36528972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superlithiated Polydopamine Derivative for High-Capacity and High-Rate Anode for Lithium-Ion Batteries.
    Dong X; Ding B; Guo H; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38101-38108. PubMed ID: 30360056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled synthesis of hollow C@TiO
    Pei J; Geng H; Ang EH; Zhang L; Cao X; Zheng J; Gu H
    Nanoscale; 2018 Sep; 10(36):17327-17334. PubMed ID: 30198042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulating the Electronic Configuration of Spinel Zinc Manganate Derived from Metal-Organic Frameworks: Controlled Synthesis and Application in Anode Materials for Lithium-Ion Batteries.
    Du W; Liu J; Zeb A; Lin X
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37652-37666. PubMed ID: 35960813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.