These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 34613796)

  • 1. Can artificial intelligence replace ultrasound as a complementary tool to mammogram for the diagnosis of the breast cancer?
    Mansour S; Kamal R; Hashem L; AlKalaawy B
    Br J Radiol; 2021 Dec; 94(1128):20210820. PubMed ID: 34613796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The added value of an artificial intelligence system in assisting radiologists on indeterminate BI-RADS 0 mammograms.
    Yi C; Tang Y; Ouyang R; Zhang Y; Cao Z; Yang Z; Wu S; Han M; Xiao J; Chang P; Ma J
    Eur Radiol; 2022 Mar; 32(3):1528-1537. PubMed ID: 34528107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Intelligence in BI-RADS Categorization of Breast Lesions on Ultrasound: Can We Omit Excessive Follow-ups and Biopsies?
    Guldogan N; Taskin F; Icten GE; Yilmaz E; Turk EB; Erdemli S; Parlakkilic UT; Turkoglu O; Aribal E
    Acad Radiol; 2024 Jun; 31(6):2194-2202. PubMed ID: 38087719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automation Bias in Mammography: The Impact of Artificial Intelligence BI-RADS Suggestions on Reader Performance.
    Dratsch T; Chen X; Rezazade Mehrizi M; Kloeckner R; Mähringer-Kunz A; Püsken M; Baeßler B; Sauer S; Maintz D; Pinto Dos Santos D
    Radiology; 2023 May; 307(4):e222176. PubMed ID: 37129490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of the UK 5-point breast imaging classification and mapping to BI-RADS to facilitate comparison with international literature.
    Taylor K; Britton P; O'Keeffe S; Wallis MG
    Br J Radiol; 2011 Nov; 84(1007):1005-10. PubMed ID: 22011830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Detection Software for Automated Breast Ultrasound.
    Kwon MR; Youn I; Lee MY; Lee HA
    Acad Radiol; 2024 Feb; 31(2):480-491. PubMed ID: 37813703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of artificial intelligence in breast cancer screening with mammography.
    Dang LA; Chazard E; Poncelet E; Serb T; Rusu A; Pauwels X; Parsy C; Poclet T; Cauliez H; Engelaere C; Ramette G; Brienne C; Dujardin S; Laurent N
    Breast Cancer; 2022 Nov; 29(6):967-977. PubMed ID: 35763243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breast ultrasound diagnostic performance and outcomes for mass lesions using Breast Imaging Reporting and Data System category 0 mammogram.
    Zanello PA; Robim AF; Oliveira TM; Elias Junior J; Andrade JM; Monteiro CR; Sarmento Filho JM; Carrara HH; Muglia VF
    Clinics (Sao Paulo); 2011; 66(3):443-8. PubMed ID: 21552670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-aided classification of BI-RADS category 3 breast lesions.
    Buchbinder SS; Leichter IS; Lederman RB; Novak B; Bamberger PN; Sklair-Levy M; Yarmish G; Fields SI
    Radiology; 2004 Mar; 230(3):820-3. PubMed ID: 14739315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Artificial Intelligence-based Mammography Screening Protocol for Breast Cancer: Outcome and Radiologist Workload.
    Lauritzen AD; Rodríguez-Ruiz A; von Euler-Chelpin MC; Lynge E; Vejborg I; Nielsen M; Karssemeijer N; Lillholm M
    Radiology; 2022 Jul; 304(1):41-49. PubMed ID: 35438561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of an Artificial Intelligence System for Interval Breast Cancer Detection at Screening Mammography.
    Nanaa M; Gupta VO; Hickman SE; Allajbeu I; Payne NR; Arponen O; Black R; Huang Y; Priest AN; Gilbert FJ
    Radiology; 2024 Aug; 312(2):e232303. PubMed ID: 39189901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reassessment and Follow-Up Results of BI-RADS Category 3 Lesions Detected on Screening Breast Ultrasound.
    Chae EY; Cha JH; Shin HJ; Choi WJ; Kim HH
    AJR Am J Roentgenol; 2016 Mar; 206(3):666-72. PubMed ID: 26901026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of ultrasound artificial intelligence in the differential diagnosis between benign and malignant breast lesions of BI-RADS 4A.
    Niu S; Huang J; Li J; Liu X; Wang D; Zhang R; Wang Y; Shen H; Qi M; Xiao Y; Guan M; Liu H; Li D; Liu F; Wang X; Xiong Y; Gao S; Wang X; Zhu J
    BMC Cancer; 2020 Oct; 20(1):959. PubMed ID: 33008320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a commercial artificial intelligence-based mammography analysis software for improving breast ultrasound interpretations.
    Kim HJ; Kim HH; Kim KH; Lee JS; Choi WJ; Chae EY; Shin HJ; Cha JH; Shim WH
    Eur Radiol; 2024 Oct; 34(10):6320-6331. PubMed ID: 38570382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammographic Surveillance After Breast-Conserving Therapy: Impact of Digital Breast Tomosynthesis and Artificial Intelligence-Based Computer-Aided Detection.
    Yoon JH; Kim EK; Kim GR; Han K; Moon HJ
    AJR Am J Roentgenol; 2022 Jan; 218(1):42-51. PubMed ID: 34378399
    [No Abstract]   [Full Text] [Related]  

  • 16. Growing BI-RADS category 3 lesions on follow-up breast ultrasound: malignancy rates and worrisome features.
    Ha SM; Chae EY; Cha JH; Shin HJ; Choi WJ; Kim HH
    Br J Radiol; 2018 Jul; 91(1087):20170787. PubMed ID: 29658793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial intelligence-based computer-aided diagnosis abnormality score trends in the serial mammography of patients with breast cancer.
    Lee SE; Han K; Rho M; Kim EK
    Eur J Radiol; 2024 Sep; 178():111626. PubMed ID: 39024665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms.
    Boumaraf S; Liu X; Ferkous C; Ma X
    Biomed Res Int; 2020; 2020():7695207. PubMed ID: 32462017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depiction of breast cancers on digital mammograms by artificial intelligence-based computer-assisted diagnosis according to cancer characteristics.
    Lee SE; Han K; Yoon JH; Youk JH; Kim EK
    Eur Radiol; 2022 Nov; 32(11):7400-7408. PubMed ID: 35499564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammographic density assessment: comparison of radiologists, automated volumetric measurement, and artificial intelligence-based computer-assisted diagnosis.
    Eom HJ; Cha JH; Choi WJ; Cho SM; Jin K; Kim HH
    Acta Radiol; 2024 Jul; 65(7):708-715. PubMed ID: 38825883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.