These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 34613820)

  • 1. Learning high-speed flight in the wild.
    Loquercio A; Kaufmann E; Ranftl R; Müller M; Koltun V; Scaramuzza D
    Sci Robot; 2021 Oct; 6(59):eabg5810. PubMed ID: 34613820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Reinforcement Learning for End-to-End Local Motion Planning of Autonomous Aerial Robots in Unknown Outdoor Environments: Real-Time Flight Experiments.
    Doukhi O; Lee DJ
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ANYmal parkour: Learning agile navigation for quadrupedal robots.
    Hoeller D; Rudin N; Sako D; Hutter M
    Sci Robot; 2024 Mar; 9(88):eadi7566. PubMed ID: 38478592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overview obstacle maps for obstacle-aware navigation of autonomous drones.
    Pestana J; Maurer M; Muschick D; Hofer M; Fraundorfer F
    J Field Robot; 2019 Jun; 36(4):734-762. PubMed ID: 31656453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural-Fly enables rapid learning for agile flight in strong winds.
    O'Connell M; Shi G; Shi X; Azizzadenesheli K; Anandkumar A; Yue Y; Chung SJ
    Sci Robot; 2022 May; 7(66):eabm6597. PubMed ID: 35507683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic obstacle avoidance for quadrotors with event cameras.
    Falanga D; Kleber K; Scaramuzza D
    Sci Robot; 2020 Mar; 5(40):. PubMed ID: 33022598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning quadrupedal locomotion over challenging terrain.
    Lee J; Hwangbo J; Wellhausen L; Koltun V; Hutter M
    Sci Robot; 2020 Oct; 5(47):. PubMed ID: 33087482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time multi-quadrotor trajectory generation via distributed receding architecture and hierarchical planning in complex environments.
    Long T; Cao Y; Xu G; Meng Z; Sun J; Wang Z
    ISA Trans; 2023 May; 136():715-726. PubMed ID: 36503616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How biomechanics, path planning and sensing enable gliding flight in a natural environment.
    Khandelwal PC; Hedrick TL
    Proc Biol Sci; 2020 Feb; 287(1921):20192888. PubMed ID: 32070254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Biologically Inspired Action Recognition from Key Poses Using a Neuromorphic Architecture.
    Layher G; Brosch T; Neumann H
    Front Neurorobot; 2017; 11():13. PubMed ID: 28381998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agilicious: Open-source and open-hardware agile quadrotor for vision-based flight.
    Foehn P; Kaufmann E; Romero A; Penicka R; Sun S; Bauersfeld L; Laengle T; Cioffi G; Song Y; Loquercio A; Scaramuzza D
    Sci Robot; 2022 Jun; 7(67):eabl6259. PubMed ID: 35731886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomous Underwater Navigation and Optical Mapping in Unknown Natural Environments.
    Hernández JD; Istenič K; Gracias N; Palomeras N; Campos R; Vidal E; García R; Carreras M
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27472337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Modular Vision Language Navigation and Manipulation Framework for Long Horizon Compositional Tasks in Indoor Environment.
    Saha H; Fotouhi F; Liu Q; Sarkar S
    Front Robot AI; 2022; 9():930486. PubMed ID: 35923304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Budgerigar flight in a varying environment: flight at distinct speeds?
    Schiffner I; Srinivasan MV
    Biol Lett; 2016 Jun; 12(6):. PubMed ID: 27330173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bumblebee flight performance in cluttered environments: effects of obstacle orientation, body size and acceleration.
    Crall JD; Ravi S; Mountcastle AM; Combes SA
    J Exp Biol; 2015 Sep; 218(Pt 17):2728-37. PubMed ID: 26333927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning.
    Chen G; Yao S; Ma J; Pan L; Chen Y; Xu P; Ji J; Chen X
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous drone hunter operating by deep learning and all-onboard computations in GPS-denied environments.
    Wyder PM; Chen YS; Lasrado AJ; Pelles RJ; Kwiatkowski R; Comas EOA; Kennedy R; Mangla A; Huang Z; Hu X; Xiong Z; Aharoni T; Chuang TC; Lipson H
    PLoS One; 2019; 14(11):e0225092. PubMed ID: 31738785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Navigation in Unknown Dynamic Environments Based on Deep Reinforcement Learning.
    Zeng J; Ju R; Qin L; Hu Y; Yin Q; Hu C
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31491927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On obstacle avoidance path planning in unknown 3D environments: A fluid-based framework.
    Wu J; Wang H; Zhang M; Yu Y
    ISA Trans; 2021 May; 111():249-264. PubMed ID: 33272588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards an Efficient CNN Inference Architecture Enabling In-Sensor Processing.
    Pantho MJH; Bhowmik P; Bobda C
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.