BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34614293)

  • 1. Histone chaperone-mediated co-expression assembly of tetrasomes and nucleosomes.
    Okimune KI; Hataya S; Matsumoto K; Ushirogata K; Banko P; Takeda S; Takasuka TE
    FEBS Open Bio; 2021 Nov; 11(11):2912-2920. PubMed ID: 34614293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the Assembly and Handedness Dynamics of (H3.3-H4)2 Tetrasomes to Canonical Tetrasomes.
    Vlijm R; Lee M; Ordu O; Boltengagen A; Lusser A; Dekker NH; Dekker C
    PLoS One; 2015; 10(10):e0141267. PubMed ID: 26506534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct roles for histone chaperones in the deposition of Htz1 in chromatin.
    Liu H; Zhu M; Mu Y; Liu L; Li G; Wan Y
    Biosci Rep; 2014 Sep; 34(5):. PubMed ID: 25338502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vitro Characterization of Histone Chaperones using Analytical, Pull-Down and Chaperoning Assays.
    Bobde RC; Saharan K; Baral S; Gandhi S; Samal A; Sundaram R; Kumar A; Singh AK; Datta A; Vasudevan D
    J Vis Exp; 2021 Dec; (178):. PubMed ID: 35037657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The intrinsic stability of H2B-ubiquitylated nucleosomes and their in vitro assembly/disassembly by histone chaperone NAP1.
    Krajewski WA
    Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129497. PubMed ID: 31785324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The histone chaperone ANP32B regulates chromatin incorporation of the atypical human histone variant macroH2A.
    Mandemaker IK; Fessler E; Corujo D; Kotthoff C; Wegerer A; Rouillon C; Buschbeck M; Jae LT; Mattiroli F; Ladurner AG
    Cell Rep; 2023 Oct; 42(10):113300. PubMed ID: 37858472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone chaperone Nap1 dismantles an H2A/H2B dimer from a partially unwrapped nucleosome.
    Nagae F; Takada S; Terakawa T
    Nucleic Acids Res; 2023 Jun; 51(11):5351-5363. PubMed ID: 37177996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between histone variants and chaperones in plants.
    Wu J; Liu B; Dong A
    Curr Opin Plant Biol; 2024 Aug; 80():102551. PubMed ID: 38776573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods to study histone chaperone function in nucleosome assembly and chromatin transcription.
    Senapati P; Sudarshan D; Gadad SS; Shandilya J; Swaminathan V; Kundu TK
    Methods Mol Biol; 2015; 1288():375-94. PubMed ID: 25827892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF.
    Torigoe SE; Urwin DL; Ishii H; Smith DE; Kadonaga JT
    Mol Cell; 2011 Aug; 43(4):638-48. PubMed ID: 21855802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Structure and function of histone chaperone FACT].
    Bondarenko MT; Maluchenko NV; Valieva ME; Gerasimova NS; Kulaeva OI; Georgiev PG; Studitsky VM
    Mol Biol (Mosk); 2015; 49(6):891-904. PubMed ID: 26710768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of Drosophila and human chromatins by wheat germ cell-free co-expression system.
    Okimune KI; Nagy SK; Hataya S; Endo Y; Takasuka TE
    BMC Biotechnol; 2020 Dec; 20(1):62. PubMed ID: 33261588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Histone Chaperones SET/TAF-1β and NPM1 Exhibit Conserved Functionality in Nucleosome Remodeling and Histone Eviction in a Cytochrome c-Dependent Manner.
    Buzón P; Velázquez-Cruz A; Corrales-Guerrero L; Díaz-Quintana A; Díaz-Moreno I; Roos WH
    Adv Sci (Weinh); 2023 Oct; 10(29):e2301859. PubMed ID: 37548614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic and structural insights into histone H2A-H2B chaperone in chromatin regulation.
    Huang Y; Dai Y; Zhou Z
    Biochem J; 2020 Sep; 477(17):3367-3386. PubMed ID: 32941645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaperoning of the histone octamer by the acidic domain of DNA repair factor APLF.
    Corbeski I; Guo X; Eckhardt BV; Fasci D; Wiegant W; Graewert MA; Vreeken K; Wienk H; Svergun DI; Heck AJR; van Attikum H; Boelens R; Sixma TK; Mattiroli F; van Ingen H
    Sci Adv; 2022 Jul; 8(30):eabo0517. PubMed ID: 35895815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A basic domain in the histone H2B N-terminal tail is important for nucleosome assembly by FACT.
    Mao P; Kyriss MN; Hodges AJ; Duan M; Morris RT; Lavine MD; Topping TB; Gloss LM; Wyrick JJ
    Nucleic Acids Res; 2016 Nov; 44(19):9142-9152. PubMed ID: 27369377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DAXX adds a de novo H3.3K9me3 deposition pathway to the histone chaperone network.
    Carraro M; Hendriks IA; Hammond CM; Solis-Mezarino V; Völker-Albert M; Elsborg JD; Weisser MB; Spanos C; Montoya G; Rappsilber J; Imhof A; Nielsen ML; Groth A
    Mol Cell; 2023 Apr; 83(7):1075-1092.e9. PubMed ID: 36868228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. POLE3-POLE4 Is a Histone H3-H4 Chaperone that Maintains Chromatin Integrity during DNA Replication.
    Bellelli R; Belan O; Pye VE; Clement C; Maslen SL; Skehel JM; Cherepanov P; Almouzni G; Boulton SJ
    Mol Cell; 2018 Oct; 72(1):112-126.e5. PubMed ID: 30217558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Abundant Histone Chaperones Spt6 and FACT Collaborate to Assemble, Inspect, and Maintain Chromatin Structure in Saccharomyces cerevisiae.
    McCullough L; Connell Z; Petersen C; Formosa T
    Genetics; 2015 Nov; 201(3):1031-45. PubMed ID: 26416482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network.
    Hammond CM; Bao H; Hendriks IA; Carraro M; García-Nieto A; Liu Y; Reverón-Gómez N; Spanos C; Chen L; Rappsilber J; Nielsen ML; Patel DJ; Huang H; Groth A
    Mol Cell; 2021 Jun; 81(12):2533-2548.e9. PubMed ID: 33857403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.