These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34614301)

  • 1. Prospective Cancer Therapies Using Stimuli-Responsive DNA Nanostructures.
    Seitz I; Shaukat A; Nurmi K; Ijäs H; Hirvonen J; Santos HA; Kostiainen MA; Linko V
    Macromol Biosci; 2021 Dec; 21(12):e2100272. PubMed ID: 34614301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano revolution of DNA nanostructures redefining cancer therapeutics-A comprehensive review.
    Yadav K; Gnanakani SPE; Sahu KK; Veni Chikkula CK; Vaddi PS; Srilakshmi S; Yadav R; Sucheta ; Dubey A; Minz S; Pradhan M
    Int J Biol Macromol; 2024 Aug; 274(Pt 1):133244. PubMed ID: 38901506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biological applications of DNA nanomaterials: current challenges and future directions.
    Ma W; Zhan Y; Zhang Y; Mao C; Xie X; Lin Y
    Signal Transduct Target Ther; 2021 Oct; 6(1):351. PubMed ID: 34620843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized-DNA nanostructures as potential targeted drug delivery systems for cancer therapy.
    Kumar A; Ahmad A; Ansari MM; Gowd V; Rashid S; Chaudhary AA; Rudayni HA; Alsalamah SA; Khan R
    Semin Cancer Biol; 2022 Nov; 86(Pt 2):54-68. PubMed ID: 36087856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Construction of i-Motif DNA-Conjugated Gold Nanostars as Near-Infrared and pH Dual-Responsive Targeted Drug Delivery Systems for Combined Cancer Therapy.
    Miao D; Yu Y; Chen Y; Liu Y; Su G
    Mol Pharm; 2020 Apr; 17(4):1127-1138. PubMed ID: 32092274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA origami applications in cancer therapy.
    Udomprasert A; Kangsamaksin T
    Cancer Sci; 2017 Aug; 108(8):1535-1543. PubMed ID: 28574639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of DNA Nanostructures and Applications in Oncotherapy.
    Zhan Y; Ma W; Zhang Y; Mao C; Shao X; Xie X; Lin Y
    Biotechnol J; 2020 Jan; 15(1):e1900094. PubMed ID: 31464361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Creation of DNA Origami-Based Supramolecular Nanostructures for Cancer Therapy.
    Zhang S; Lou XY; Liu L; Yang YW
    Adv Healthc Mater; 2023 Oct; 12(27):e2301066. PubMed ID: 37252899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfigurable DNA Origami Nanocapsule for pH-Controlled Encapsulation and Display of Cargo.
    Ijäs H; Hakaste I; Shen B; Kostiainen MA; Linko V
    ACS Nano; 2019 May; 13(5):5959-5967. PubMed ID: 30990664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Nanodevice-Based Drug Delivery Systems.
    Guan C; Zhu X; Feng C
    Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional-DNA-Driven Dynamic Nanoconstructs for Biomolecule Capture and Drug Delivery.
    Kim J; Jang D; Park H; Jung S; Kim DH; Kim WJ
    Adv Mater; 2018 Nov; 30(45):e1707351. PubMed ID: 30062803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precisely Tailored DNA Nanostructures and their Theranostic Applications.
    Zhu B; Wang L; Li J; Fan C
    Chem Rec; 2017 Dec; 17(12):1213-1230. PubMed ID: 28608630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular protein-DNA hybrid nanostructures as a drug delivery platform.
    Ryu Y; Hong CA; Song Y; Beak J; Seo BA; Lee JJ; Kim HS
    Nanoscale; 2020 Feb; 12(8):4975-4981. PubMed ID: 32057052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision-Guided Missile-Like DNA Nanostructure Containing Warhead and Guidance Control for Aptamer-Based Targeted Drug Delivery into Cancer Cells in Vitro and in Vivo.
    Ouyang C; Zhang S; Xue C; Yu X; Xu H; Wang Z; Lu Y; Wu ZS
    J Am Chem Soc; 2020 Jan; 142(3):1265-1277. PubMed ID: 31895985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA origami as an in vivo drug delivery vehicle for cancer therapy.
    Zhang Q; Jiang Q; Li N; Dai L; Liu Q; Song L; Wang J; Li Y; Tian J; Ding B; Du Y
    ACS Nano; 2014 Jul; 8(7):6633-43. PubMed ID: 24963790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA Nanostructures as Smart Drug-Delivery Vehicles and Molecular Devices.
    Linko V; Ora A; Kostiainen MA
    Trends Biotechnol; 2015 Oct; 33(10):586-594. PubMed ID: 26409777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the influence of small structural modifications in simple DNA-based nanostructures on their role as drug nanocarriers.
    Postigo A; Martínez-Vicente P; Baumann KN; Del Barrio J; Hernández-Ainsa S
    Biomater Sci; 2024 Mar; 12(6):1549-1557. PubMed ID: 38305143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of stimuli-responsive polymers as anticancer drug delivery systems.
    Taghizadeh B; Taranejoo S; Monemian SA; Salehi Moghaddam Z; Daliri K; Derakhshankhah H; Derakhshani Z
    Drug Deliv; 2015 Feb; 22(2):145-55. PubMed ID: 24547737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimuli-Responsive DNA Self-Assembly: From Principles to Applications.
    Yu Y; Jin B; Li Y; Deng Z
    Chemistry; 2019 Jul; 25(42):9785-9798. PubMed ID: 30931536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimuli-responsive nucleic acid nanostructures for efficient drug delivery.
    Yang C; Wu X; Liu J; Ding B
    Nanoscale; 2022 Dec; 14(48):17862-17870. PubMed ID: 36458678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.