BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 34614486)

  • 21. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids.
    Zhang YS; Pi Q; van Genderen AM
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28829418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.
    Piluso S; Skvortsov GA; Altunbek M; Afghah F; Khani N; Koç B; Patterson J
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34192670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications.
    Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS
    Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visible Light-Based 4D-Bioprinted Tissue Scaffold.
    Gugulothu SB; Chatterjee K
    ACS Macro Lett; 2023 Apr; 12(4):494-502. PubMed ID: 37002946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electron Spin Resonance Probe Incorporation into Bioinks Permits Longitudinal Oxygen Imaging of Bioprinted Constructs.
    Sarvari S; McGee D; O'Connell R; Tseytlin O; Bobko AA; Tseytlin M
    Mol Imaging Biol; 2024 Jun; 26(3):511-524. PubMed ID: 38038860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoparticle-Stabilized Emulsion Bioink for Digital Light Processing Based 3D Bioprinting of Porous Tissue Constructs.
    Tao J; Zhu S; Zhou N; Wang Y; Wan H; Zhang L; Tang Y; Pan Y; Yang Y; Zhang J; Liu R
    Adv Healthc Mater; 2022 Jun; 11(12):e2102810. PubMed ID: 35194975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting.
    Bilici Ç; Tatar AG; Şentürk E; Dikyol C; Koç B
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation.
    Chen J; Huang D; Wang L; Hou J; Zhang H; Li Y; Zhong S; Wang Y; Wu Y; Huang W
    J Colloid Interface Sci; 2020 Aug; 574():162-173. PubMed ID: 32311538
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs.
    Zhang X; Kim GJ; Kang MG; Lee JK; Seo JW; Do JT; Hong K; Cha JM; Shin SR; Bae H
    Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30518062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization.
    Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT
    Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing.
    Anand R; Salar Amoli M; Huysecom AS; Amorim PA; Agten H; Geris L; Bloemen V
    Biomed Mater; 2022 Jun; 17(4):. PubMed ID: 35700719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting.
    Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ 3D bioprinting with bioconcrete bioink.
    Xie M; Shi Y; Zhang C; Ge M; Zhang J; Chen Z; Fu J; Xie Z; He Y
    Nat Commun; 2022 Jun; 13(1):3597. PubMed ID: 35739106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering.
    Choe R; Devoy E; Kuzemchak B; Sherry M; Jabari E; Packer JD; Fisher JP
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35120345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Bioprinted Hydrogel Microfluidic Devices for Parallel Drug Screening.
    Bhusal A; Dogan E; Nieto D; Mousavi Shaegh SA; Cecen B; Miri AK
    ACS Appl Bio Mater; 2022 Aug; ():. PubMed ID: 36037061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing.
    Cheng QP; Hsu SH
    Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gelatin methacrylate hydrogel with drug-loaded polymer microspheres as a new bioink for 3D bioprinting.
    Mirek A; Belaid H; Bartkowiak A; Barranger F; Salmeron F; Kajdan M; Grzeczkowicz M; Cavaillès V; Lewińska D; Bechelany M
    Biomater Adv; 2023 Jul; 150():213436. PubMed ID: 37104964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue.
    García-Lizarribar A; Fernández-Garibay X; Velasco-Mallorquí F; Castaño AG; Samitier J; Ramon-Azcon J
    Macromol Biosci; 2018 Oct; 18(10):e1800167. PubMed ID: 30156756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.