These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34614570)

  • 1. Conical holographic display to expand the vertical field of view.
    Zhou Z; Wang J; Wu Y; Jin F; Zhang Z; Ma Y; Chen N
    Opt Express; 2021 Jul; 29(15):22931-22943. PubMed ID: 34614570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large field-of-view holographic display by gapless splicing of multisegment cylindrical holograms.
    Ma Y; Wang J; Wu Y; Jin F; Zhang Z; Zhou Z; Chen N
    Appl Opt; 2021 Aug; 60(24):7381-7390. PubMed ID: 34613027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expansion of a vertical effective viewing zone for an optical 360° holographic display.
    Wang J; Zhou J; Wu Y; Lei X; Zhang Y
    Opt Express; 2022 Nov; 30(24):43037-43052. PubMed ID: 36523011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnification and quality improvement for an optical cylindrical holographic display.
    Wang J; Guo Z; Wu Y
    Appl Opt; 2022 Dec; 61(35):10478-10483. PubMed ID: 36607109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spherical crown diffraction model by occlusion utilizing for a curved holographic display.
    Liu C; Wang J; Wu Y; Lei X; Wang P; Han H; Chen C
    Opt Express; 2022 Aug; 30(18):31685-31700. PubMed ID: 36242246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occlusion culling for computer-generated cylindrical holograms based on a horizontal optical-path-limit function.
    Li Y; Wang J; Chen C; Li B; Yang R; Chen N
    Opt Express; 2020 Jun; 28(12):18516-18528. PubMed ID: 32680049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution to the issue of high-order diffraction images for cylindrical computer-generated holograms.
    Zhou J; Jiang L; Yu G; Wang J; Wu Y; Wang J
    Opt Express; 2024 Apr; 32(9):14978-14993. PubMed ID: 38859160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lens array-based holographic 3D display with an expanded field of view and eyebox.
    Wang Z; Lv G; Pang Y; Feng Q; Wang A; Ming H
    Opt Lett; 2023 Nov; 48(21):5559-5562. PubMed ID: 37910702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution.
    Zhang F; Pedrini G; Osten W
    Opt Lett; 2006 Jun; 31(11):1633-5. PubMed ID: 16688244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-step diffraction method for an optical 360
    Liu X; Wang J; Wang M; Zhou J; Zhang Y; Wu Y
    Opt Lett; 2023 Aug; 48(16):4280-4283. PubMed ID: 37582012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast Hologram Calculation Method Based on Wavefront Precise Diffraction.
    Wang Z; Li Y; Tang Z; Li Z; Wang D
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Holographic display method with a large field of view based on a holographic functional screen.
    Liu SJ; Wang D; Zhai FX; Liu NN; Hao QY
    Appl Opt; 2020 Jul; 59(20):5983-5988. PubMed ID: 32672751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast generation of 360-degree cylindrical photorealistic hologram using ray-optics based methods.
    Zhang X; Tu K; Lv G; Wang Z; Feng Q
    Opt Express; 2021 Jun; 29(13):20632-20648. PubMed ID: 34266148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-generated hologram generation method to increase the field of view of the reconstructed image.
    Liu SJ; Xiao D; Li XW; Wang QH
    Appl Opt; 2018 Jan; 57(1):A86-A90. PubMed ID: 29328133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-step acceleration calculation method to generate curved holograms using the intermediate plane in a three-dimensional holographic display.
    Pi D; Liu J; Yu S
    Appl Opt; 2021 Sep; 60(25):7640-7647. PubMed ID: 34613232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large field-of-view holographic Maxwellian display based on spherical crown diffraction.
    Zhang W; Wang J; Tan C; Wu Y; Zhang Y; Chen N
    Opt Express; 2023 Jul; 31(14):22660-22670. PubMed ID: 37475371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-color see-through near-eye holographic display with 80° field of view and an expanded eye-box.
    Duan X; Liu J; Shi X; Zhang Z; Xiao J
    Opt Express; 2020 Oct; 28(21):31316-31329. PubMed ID: 33115107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holographic waveguide HUD with in-line pupil expansion and 2D FOV expansion.
    Bigler CM; Mann MS; Blanche PA
    Appl Opt; 2019 Dec; 58(34):G326-G331. PubMed ID: 31873517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast calculation method for parabolic-mirror-reflection holographic 3D display using wavefront segmentation.
    Sando Y; Satoh K; Barada D; Yatagai T
    Appl Opt; 2020 Sep; 59(27):8211-8216. PubMed ID: 32976403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula.
    Shen F; Wang A
    Appl Opt; 2006 Feb; 45(6):1102-10. PubMed ID: 16523770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.