These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Distributed birefringence measurement with beat period detection of homodyne Brillouin optical time-domain reflectometry. Lu Y; Bao X; Chen L; Xie S; Pang M Opt Lett; 2012 Oct; 37(19):3936-8. PubMed ID: 23027237 [TBL] [Abstract][Full Text] [Related]
43. Low-frequency transmitted intensity noise induced by stimulated Brillouin scattering in optical fibers. David A; Horowitz M Opt Express; 2011 Jun; 19(12):11792-803. PubMed ID: 21716412 [TBL] [Abstract][Full Text] [Related]
44. Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator. Kemal JN; Pfeifle J; Marin-Palomo P; Pascual MD; Wolf S; Smyth F; Freude W; Koos C Opt Express; 2016 Oct; 24(22):25432-25445. PubMed ID: 27828482 [TBL] [Abstract][Full Text] [Related]
45. Cost-effective bandwidth-reduced Brillouin optical time domain reflectometry using a reference Brillouin scattering beam. Iida D; Ito F Appl Opt; 2009 Aug; 48(22):4302-9. PubMed ID: 19649032 [TBL] [Abstract][Full Text] [Related]
46. Investigation on the Influence of Humidity on Stimulated Brillouin Backscattering in Perfluorinated Polymer Optical Fibers. Schreier A; Liehr S; Wosniok A; Krebber K Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30445689 [TBL] [Abstract][Full Text] [Related]
47. Analysis of Brillouin frequency shift and acoustic waves in a hollow optical fiber. Jeong Y; Song KY; Hotate K; Oh K Opt Lett; 2009 Oct; 34(20):3217-9. PubMed ID: 19838278 [TBL] [Abstract][Full Text] [Related]
48. Widely tunable single bandpass microwave photonic filter based on Brillouin-assisted optical carrier recovery. Wang WT; Liu JG; Sun WH; Wang WY; Wang SL; Zhu NH Opt Express; 2014 Dec; 22(24):29304-13. PubMed ID: 25606864 [TBL] [Abstract][Full Text] [Related]
49. Multiple radio frequency measurements with an improved frequency resolution based on stimulated Brillouin scattering with a reduced gain bandwidth. Shi T; Chen Y Opt Lett; 2021 Jul; 46(14):3460-3463. PubMed ID: 34264238 [TBL] [Abstract][Full Text] [Related]
50. Strain event detection using a double-pulse technique of a Brillouin scattering-based distributed optical fiber sensor. Cho SB; Lee JJ; Kwon IB Opt Express; 2004 Sep; 12(18):4339-46. PubMed ID: 19483982 [TBL] [Abstract][Full Text] [Related]
51. All-fiber Brillouin optical spectrum analyzer based on self-sweeping fiber laser. Tkachenko AY; Lobach IA; Kablukov SI Opt Express; 2017 Jul; 25(15):17600-17605. PubMed ID: 28789252 [TBL] [Abstract][Full Text] [Related]
52. Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing. Xie S; Pang M; Bao X; Chen L Opt Express; 2012 Mar; 20(6):6385-99. PubMed ID: 22418520 [TBL] [Abstract][Full Text] [Related]
53. High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis. Elooz D; Antman Y; Levanon N; Zadok A Opt Express; 2014 Mar; 22(6):6453-63. PubMed ID: 24663994 [TBL] [Abstract][Full Text] [Related]
54. Frequency response of a continuously tuning narrow-band optical filter based on stimulated Brillouin scattering. Zhong Y; Wang H; Ke C; Liang Z; Liu D Opt Express; 2021 Sep; 29(19):30307-30318. PubMed ID: 34614756 [TBL] [Abstract][Full Text] [Related]
55. Fiber-based angular filtering for high-resolution Brillouin spectroscopy in the 20-300 GHz frequency range. Rodriguez A; Priya P; Ortiz O; Senellart P; Gomez-Carbonell C; Lemaître A; Esmann M; Lanzillotti-Kimura ND Opt Express; 2021 Jan; 29(2):2637-2646. PubMed ID: 33726455 [TBL] [Abstract][Full Text] [Related]
56. Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers. Kalosha VP; Li W; Wang F; Chen L; Bao X Opt Lett; 2008 Dec; 33(23):2848-50. PubMed ID: 19037447 [TBL] [Abstract][Full Text] [Related]
57. On-chip Brillouin purification for frequency comb-based coherent optical communications. Choudhary A; Pelusi M; Marpaung D; Inoue T; Vu K; Ma P; Choi DY; Madden S; Namiki S; Eggleton BJ Opt Lett; 2017 Dec; 42(24):5074-5077. PubMed ID: 29240140 [TBL] [Abstract][Full Text] [Related]
58. Overcoming EDFA slow transient effects in a combined Golay coding and coherent detection BOTDA sensor. Liu C; Yan L; Li Z; Zhou Y; Zhang X; Pan W; Luo B Opt Express; 2019 Dec; 27(26):38220-38228. PubMed ID: 31878592 [TBL] [Abstract][Full Text] [Related]
59. Optical frequency shifter technique based on stimulated Brillouin scattering in birefringent optical fiber. Duffy CJ; Tatam RP Appl Opt; 1993 Oct; 32(30):5966-72. PubMed ID: 20856421 [TBL] [Abstract][Full Text] [Related]
60. Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams. Wang S; Ren L; Liu Y; Tomita Y Opt Express; 2008 May; 16(11):8067-76. PubMed ID: 18545519 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]