These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 34614617)
1. Performance analysis of dual-frequency lidar in the detection of the complex wind field. Xu H; Li J Opt Express; 2021 Jul; 29(15):23524-23539. PubMed ID: 34614617 [TBL] [Abstract][Full Text] [Related]
2. Pulse Accumulation Approach Based on Signal Phase Estimation for Doppler Wind Lidar. Liang N; Yu X; Lin P; Chang S; Zhang H; Su C; Luo F; Tong S Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610272 [TBL] [Abstract][Full Text] [Related]
4. Denoising coherent Doppler lidar data based on a U-Net convolutional neural network. Song Y; Han Y; Su Z; Chen C; Sun D; Chen T; Xue X Appl Opt; 2024 Jan; 63(1):275-282. PubMed ID: 38175030 [TBL] [Abstract][Full Text] [Related]
5. Coherent Doppler wind lidar with real-time wind processing and low signal-to-noise ratio reconstruction based on a convolutional neural network. Kliebisch O; Uittenbosch H; Thurn J; Mahnke P Opt Express; 2022 Feb; 30(4):5540-5552. PubMed ID: 35209514 [TBL] [Abstract][Full Text] [Related]
6. Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation. Xia H; Sun D; Yang Y; Shen F; Dong J; Kobayashi T Appl Opt; 2007 Oct; 46(29):7120-31. PubMed ID: 17932519 [TBL] [Abstract][Full Text] [Related]
7. Doppler Lidar with High Sensitivity and Large Dynamic Range for Atmospheric Wind Measurement. Wang L; Tan LQ; Chang B; Lu GG; Gao F; Hua DX Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):958-63. PubMed ID: 30160450 [TBL] [Abstract][Full Text] [Related]
8. A Hardware Implemented Autocorrelation Technique for Estimating Power Spectral Density for Processing Signals from a Doppler Wind Lidar System. Abdelazim S; Santoro D; Arend M; Moshary F; Ahmed S Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486511 [TBL] [Abstract][Full Text] [Related]
13. Meter-scale spatial-resolution-coherent Doppler wind lidar based on Golay coding. Wang C; Xia H; Wu Y; Dong J; Wei T; Wang L; Dou X Opt Lett; 2019 Jan; 44(2):311-314. PubMed ID: 30644888 [TBL] [Abstract][Full Text] [Related]
14. High-resolution Doppler-velocity estimation techniques for processing of coherent heterodyne pulsed lidar data. Gurdev LL; Dreischuh TN; Stoyanov DV J Opt Soc Am A Opt Image Sci Vis; 2001 Jan; 18(1):134-42. PubMed ID: 11151990 [TBL] [Abstract][Full Text] [Related]
15. Wind lidar signal denoising method based on singular value decomposition and variational mode decomposition. Dai H; Gao C; Lin Z; Wang K; Zhang X Appl Opt; 2021 Dec; 60(34):10721-10726. PubMed ID: 35200938 [TBL] [Abstract][Full Text] [Related]
16. Identifying cloud, precipitation, windshear, and turbulence by deep analysis of the power spectrum of coherent Doppler wind lidar. Yuan J; Xia H; Wei T; Wang L; Yue B; Wu Y Opt Express; 2020 Dec; 28(25):37406-37418. PubMed ID: 33379576 [TBL] [Abstract][Full Text] [Related]
17. Vertical wind velocity measurements by a Doppler lidar and comparisons with a Doppler sodar. Congeduti F; Fiocco G; Adriani A; Guarrella C Appl Opt; 1981 Jun; 20(12):2048-54. PubMed ID: 20332885 [TBL] [Abstract][Full Text] [Related]
18. Meter-scale and sub-second-resolution coherent Doppler wind LIDAR and hyperfine wind observation. Liang C; Wang C; Xue X; Dou X; Chen T Opt Lett; 2022 Jul; 47(13):3179-3182. PubMed ID: 35776579 [TBL] [Abstract][Full Text] [Related]