These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34614672)

  • 41. Low bending loss and effectively single-mode all-solid photonic bandgap fiber with an effective area of 650 μm2.
    Kashiwagi M; Saitoh K; Takenaga K; Tanigawa S; Matsuo S; Fujimaki M
    Opt Lett; 2012 Apr; 37(8):1292-4. PubMed ID: 22513663
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Solid-core photonic bandgap fibers for cladding-pumped Raman amplification.
    Ward B
    Opt Express; 2011 Jun; 19(12):11852-66. PubMed ID: 21716418
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of cladding elements on the loss performance of hollow-core anti-resonant fibers.
    Selim Habib M; Markos C; Amezcua-Correa R
    Opt Express; 2021 Feb; 29(3):3359-3374. PubMed ID: 33770935
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Asymmetric large-mode-area photonic crystal fiber structure with effective single-mode operation: design and analysis.
    Saini TS; Kumar A; Sinha RK
    Appl Opt; 2016 Mar; 55(9):2306-11. PubMed ID: 27140567
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements.
    Habib MS; Bang O; Bache M
    Opt Express; 2016 Apr; 24(8):8429-36. PubMed ID: 27137281
    [TBL] [Abstract][Full Text] [Related]  

  • 46. All fiber M-Z interferometer for high temperature sensing based on a hetero-structured cladding solid-core photonic bandgap fiber.
    Hu X; Shen X; Wu J; Peng J; Yang L; Li J; Li H; Dai N
    Opt Express; 2016 Sep; 24(19):21693-9. PubMed ID: 27661907
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Numerical modeling of a hybrid hollow-core fiber for enhanced mid-infrared guidance.
    Hayashi JG; Mousavi SMA; Ventura A; Poletti F
    Opt Express; 2021 May; 29(11):17042-17052. PubMed ID: 34154255
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-mode delivery of 250 nm light using a large mode area photonic crystal fiber.
    Yamamoto N; Tao L; Yalin AP
    Opt Express; 2009 Sep; 17(19):16933-40. PubMed ID: 19770911
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Extending mode areas of single-mode all-solid photonic bandgap fibers.
    Gu G; Kong F; Hawkins TW; Jones M; Dong L
    Opt Express; 2015 Apr; 23(7):9147-56. PubMed ID: 25968749
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Low loss nested hollow-core anti-resonant fiber at 2 µm spectral range.
    Zhang X; Song W; Dong Z; Yao J; Wan S; Hou Y; Wang P
    Opt Lett; 2022 Feb; 47(3):589-592. PubMed ID: 35103683
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low loss and high performance interconnection between standard single-mode fiber and antiresonant hollow-core fiber.
    Suslov D; Komanec M; Numkam Fokoua ER; Dousek D; Zhong A; Zvánovec S; Bradley TD; Poletti F; Richardson DJ; Slavík R
    Sci Rep; 2021 Apr; 11(1):8799. PubMed ID: 33888786
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extremely large-mode-area photonic crystal fibre with low bending loss.
    Napierała M; Nasiłowski T; Bereś-Pawlik E; Berghmans F; Wójcik J; Thienpont H
    Opt Express; 2010 Jul; 18(15):15408-18. PubMed ID: 20720920
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrawide bandwidth single-mode polarization beam splitter based on dual-hollow-core antiresonant fiber.
    Jia H; Wang X; Zhao T; Tang Z; Lian Z; Lou S; Sheng X
    Appl Opt; 2021 Nov; 60(31):9781-9789. PubMed ID: 34807165
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Measurement of resonant bend loss in anti-resonant hollow core optical fiber.
    Carter RM; Yu F; Wadsworth WJ; Shephard JD; Birks T; Knight JC; Hand DP
    Opt Express; 2017 Aug; 25(17):20612-20621. PubMed ID: 29041739
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Low-loss singlemode large mode area all-silica photonic bandgap fiber.
    Février S; Jamier R; Blondy JM; Semjonov SL; Likhachev ME; Bubnov MM; Dianov EM; Khopin VF; Salganskii MY; Guryanov AN
    Opt Express; 2006 Jan; 14(2):562-9. PubMed ID: 19503371
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detection of acoustic pressure with hollow-core photonic bandgap fiber.
    Pang M; Jin W
    Opt Express; 2009 Jun; 17(13):11088-97. PubMed ID: 19550508
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Low bending loss few-mode hollow-core anti-resonant fiber with glass-sheet conjoined nested tubes.
    Liu H; Wang Y; Zhou Y; Guan Z; Yu Z; Ling Q; Luo S; Shao J; Huang D; Chen D
    Opt Express; 2022 Jun; 30(12):21833-21842. PubMed ID: 36224895
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range.
    Aleshkina SS; Likhachev ME; Pryamikov AD; Gaponov DA; Denisov AN; Bubnov MM; Salganskii MY; Laptev AY; Guryanov AN; Uspenskii YA; Popov NL; Février S
    Opt Lett; 2011 Sep; 36(18):3566-8. PubMed ID: 21931392
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm.
    Bouwmans G; Bigot L; Quiquempois Y; Lopez F; Provino L; Douay M
    Opt Express; 2005 Oct; 13(21):8452-9. PubMed ID: 19498875
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two-mode multiplexing at 2 × 10.7 Gbps over a 7-cell hollow-core photonic bandgap fiber.
    Xu J; Peucheret C; Lyngsø JK; Leick L
    Opt Express; 2012 May; 20(11):12449-56. PubMed ID: 22714232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.