These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 34614755)

  • 1. Chromatic aberration in planar focusing mirrors based on a monolithic high contrast grating.
    Komar P; Gębski M; Lott JA; Wasiak M
    Opt Express; 2021 Sep; 29(19):30296-30306. PubMed ID: 34614755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Demonstration of Light Focusing Enabled by Monolithic High-Contrast Grating Mirrors.
    Komar P; Gȩbski M; Lott JA; Czyszanowski T; Wasiak M
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25533-25539. PubMed ID: 34008943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planar focusing reflectors based on monolithic high contrast gratings: design procedure and comparison with parabolic mirrors.
    Komar P; Gębski M; Czyszanowski T; Dems M; Wasiak M
    Opt Express; 2020 Dec; 28(26):38745-38761. PubMed ID: 33379437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal parameters of monolithic high-contrast grating mirrors.
    Marciniak M; Gębski M; Dems M; Haglund E; Larsson A; Riaziat M; Lott JA; Czyszanowski T
    Opt Lett; 2016 Aug; 41(15):3495-8. PubMed ID: 27472602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning of reflection spectrum of a monolithic high-contrast grating by variation of its spatial dimensions.
    Marciniak M; Broda A; Gębski M; Dems M; Muszalski J; Czerwinski A; Ratajczak J; Marona Ł; Nakwaski W; Lott JA; Czyszanowski T
    Opt Express; 2020 Jul; 28(14):20967-20977. PubMed ID: 32680146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolithic high contrast grating on GaSb/AlAsSb based epitaxial structures for mid-infrared wavelength applications.
    Schade A; Bader A; Huber T; Kuhn S; Czyszanowski T; Pfenning A; Rygała M; Smołka T; Motyka M; Sęk G; Hartmann F; Höfling S
    Opt Express; 2023 May; 31(10):16025-16034. PubMed ID: 37157690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse chromatic aberration and its numerical optimization in a metamaterial lens.
    Capecchi WJ; Behdad N; Volpe FA
    Opt Express; 2012 Apr; 20(8):8761-9. PubMed ID: 22513587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband achromatic optical metasurface devices.
    Wang S; Wu PC; Su VC; Lai YC; Hung Chu C; Chen JW; Lu SH; Chen J; Xu B; Kuan CH; Li T; Zhu S; Tsai DP
    Nat Commun; 2017 Aug; 8(1):187. PubMed ID: 28775300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelength independent grating lens system.
    Kato M; Maeda S; Yamagishi F; Ikeda H; Inagaki T
    Appl Opt; 1989 Feb; 28(4):682-6. PubMed ID: 20548541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing.
    Wang P; Mohammad N; Menon R
    Sci Rep; 2016 Feb; 6():21545. PubMed ID: 26868264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberration effects on femtosecond pulses generated by nonideal achromatic doublets.
    Estrada-Silva FC; Garduño-Mejía J; Rosete-Aguilar M; Román-Moreno CJ; Ortega-Martínez R
    Appl Opt; 2009 Aug; 48(24):4723-34. PubMed ID: 19696861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of a precise ellipsoidal mirror for soft X-ray nanofocusing.
    Mimura H; Takei Y; Kume T; Takeo Y; Motoyama H; Egawa S; Matsuzawa Y; Yamaguchi G; Senba Y; Kishimoto H; Ohashi H
    Rev Sci Instrum; 2018 Sep; 89(9):093104. PubMed ID: 30278763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror.
    Gębski M; Dems M; Szerling A; Motyka M; Marona L; Kruszka R; Urbańczyk D; Walczakowski M; Pałka N; Wójcik-Jedlińska A; Wang QJ; Zhang DH; Bugajski M; Wasiak M; Czyszanowski T
    Opt Express; 2015 May; 23(9):11674-86. PubMed ID: 25969259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband aberration-corrected snapshot spectrometer with a toroidal slicer mirror.
    Zhang Y; Zhang Z; Yang H; Zhang Y; Huang Z; Jin G
    Appl Opt; 2019 Feb; 58(4):826-832. PubMed ID: 30874126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focusing characteristics of a planar solid-immersion mirror.
    Peng C; Mihalcea C; Pelhos K; Challener WA
    Appl Opt; 2006 Mar; 45(8):1785-93. PubMed ID: 16572695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design for an aberration corrected scanning electron microscope using miniature electron mirrors.
    Dohi H; Kruit P
    Ultramicroscopy; 2018 Jun; 189():1-23. PubMed ID: 29574382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatic aberration of light focusing in hyperbolic anisotropic metamaterial made of metallic slit array.
    Guo K; Liu J; Zhang Y; Liu S
    Opt Express; 2012 Dec; 20(27):28586-93. PubMed ID: 23263096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ocular chromatic aberration on monocular visual performance.
    Thibos LN; Bradley A; Zhang XX
    Optom Vis Sci; 1991 Aug; 68(8):599-607. PubMed ID: 1923336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examining the Effects of Chromatic Aberration, Object Distance, and Eye Shape on Image-Formation in the Mirror-Based Eyes of the Bay Scallop Argopecten irradians.
    Speiser DI; Gagnon YL; Chhetri RK; Oldenburg AL; Johnsen S
    Integr Comp Biol; 2016 Nov; 56(5):796-808. PubMed ID: 27549200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigating Chromatic Dispersion with Hybrid Optical Metasurfaces.
    Sawant R; Bhumkar P; Zhu AY; Ni P; Capasso F; Genevet P
    Adv Mater; 2019 Jan; 31(3):e1805555. PubMed ID: 30468543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.