These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 34614775)
1. Conductive mixed-order generalized dispersion model for noble metals in the optical regime. Mai W; Campbell SD; Werner DH Opt Express; 2021 Sep; 29(19):30520-30531. PubMed ID: 34614775 [TBL] [Abstract][Full Text] [Related]
2. Continuous-discontinuous Galerkin time domain (CDGTD) method with generalized dispersive material (GDM) model for computational photonics. Ren Q; Bao H; Campbell SD; Prokopeva LJ; Kildishev AV; Werner DH Opt Express; 2018 Oct; 26(22):29005-29016. PubMed ID: 30470069 [TBL] [Abstract][Full Text] [Related]
3. Discontinuous Galerkin time domain analysis of electromagnetic scattering from dispersive periodic nanostructures at oblique incidence. Bao H; Kang L; Campbell SD; Werner DH Opt Express; 2019 Apr; 27(9):13116-13128. PubMed ID: 31052841 [TBL] [Abstract][Full Text] [Related]
4. Efficient Wideband Numerical Simulations for Nanostructures Employing a Drude-Critical Points (DCP) Dispersive Model. Ren Q; Nagar J; Kang L; Bian Y; Werner P; Werner DH Sci Rep; 2017 May; 7(1):2126. PubMed ID: 28522828 [TBL] [Abstract][Full Text] [Related]
5. Simulation of the nonlinear Kerr and Raman effect with a parallel local time-stepping DGTD solver. Zhang T; Peng Y; Dai Z; Bao H; Xiao Z; Chen X; Ding D Opt Express; 2023 Jan; 31(1):344-354. PubMed ID: 36606971 [TBL] [Abstract][Full Text] [Related]
6. Development and application of an aerosol screening model for size-resolved urban aerosols. Stanier CO; Lee SR; Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039 [TBL] [Abstract][Full Text] [Related]
7. Application of a discontinuous Galerkin time domain method to simulation of optical properties of dielectric particles. Tang G; Panetta RL; Yang P Appl Opt; 2010 May; 49(15):2827-40. PubMed ID: 20490244 [TBL] [Abstract][Full Text] [Related]
8. Optical near-field analysis of spherical metals: Application of the FDTD method combined with the ADE method. Yamaguchi T; Hinata T Opt Express; 2007 Sep; 15(18):11481-91. PubMed ID: 19547505 [TBL] [Abstract][Full Text] [Related]
9. Supersonic turbulent flow simulation using a scalable parallel modal discontinuous Galerkin numerical method. Houba T; Dasgupta A; Gopalakrishnan S; Gosse R; Roy S Sci Rep; 2019 Oct; 9(1):14442. PubMed ID: 31594959 [TBL] [Abstract][Full Text] [Related]
10. The Drude-Smith Equation and Related Equations for the Frequency-Dependent Electrical Conductivity of Materials: Insight from a Memory Function Formalism. Chen WC; Marcus RA Chemphyschem; 2021 Aug; 22(16):1667-1674. PubMed ID: 34143933 [TBL] [Abstract][Full Text] [Related]
12. Optical properties of metallic films for vertical-cavity optoelectronic devices. Rakic AD; Djurisic AB; Elazar JM; Majewski ML Appl Opt; 1998 Aug; 37(22):5271-83. PubMed ID: 18286006 [TBL] [Abstract][Full Text] [Related]
13. An arbitrary high-order discontinuous Galerkin method with local time-stepping for linear acoustic wave propagation. Wang H; Cosnefroy M; Hornikx M J Acoust Soc Am; 2021 Jan; 149(1):569. PubMed ID: 33514145 [TBL] [Abstract][Full Text] [Related]
14. Simple magneto-optic transition metal models for time-domain simulations. Wolff C; Rodríguez-Oliveros R; Busch K Opt Express; 2013 May; 21(10):12022-37. PubMed ID: 23736424 [TBL] [Abstract][Full Text] [Related]
15. New formulae for the high-order derivatives of some Jacobi polynomials: an application to some high-order boundary value problems. Abd-Elhameed WM ScientificWorldJournal; 2014; 2014():456501. PubMed ID: 25386599 [TBL] [Abstract][Full Text] [Related]
16. A higher-order finite element reactive transport model for unstructured and fractured grids. Moortgat J; Li M; Amooie MA; Zhu D Sci Rep; 2020 Sep; 10(1):15572. PubMed ID: 32968113 [TBL] [Abstract][Full Text] [Related]
17. An adaptive hybridizable discontinuous Galerkin approach for cardiac electrophysiology. Hoermann JM; Bertoglio C; Kronbichler M; Pfaller MR; Chabiniok R; Wall WA Int J Numer Method Biomed Eng; 2018 May; 34(5):e2959. PubMed ID: 29316340 [TBL] [Abstract][Full Text] [Related]
18. Time-domain impedance boundary condition modeling with the discontinuous Galerkin method for room acoustics simulations. Wang H; Hornikx M J Acoust Soc Am; 2020 Apr; 147(4):2534. PubMed ID: 32359313 [TBL] [Abstract][Full Text] [Related]
19. Stretched-coordinate PMLs for Maxwell's equations in the discontinuous Galerkin time-domain method. König M; Prohm C; Busch K; Niegemann J Opt Express; 2011 Feb; 19(5):4618-31. PubMed ID: 21369294 [TBL] [Abstract][Full Text] [Related]
20. A unified discontinuous Galerkin framework for time integration. Zhao S; Wei GW Math Methods Appl Sci; 2014 May; 37(7):1042-1071. PubMed ID: 25382889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]