These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 34614779)

  • 1. Single step zero-thermal-expansion temperature measurement of optical reference cavities.
    Wang Z; Ye Y; Chang J; Zhang J; Sun Y; He L; Wu Q; Lu Z; Zhang J
    Opt Express; 2021 Sep; 29(19):30567-30578. PubMed ID: 34614779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design verification of large time constant thermal shields for optical reference cavities.
    Zhang J; Wu W; Shi XH; Zeng XY; Deng K; Lu ZH
    Rev Sci Instrum; 2016 Feb; 87(2):023104. PubMed ID: 26931831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations.
    Dai X; Jiang Y; Hang C; Bi Z; Ma L
    Opt Express; 2015 Feb; 23(4):5134-46. PubMed ID: 25836547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-stable 1064-nm neodymium-doped yttrium aluminum garnet lasers with 2.5 × 10
    Li L; Wang J; Bi J; Zhang T; Peng J; Zhi Y; Chen L
    Rev Sci Instrum; 2021 Apr; 92(4):043001. PubMed ID: 34243418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable CW laser based on low thermal expansion ceramic cavity with 4.9 mHz/s frequency drift.
    Ito I; Silva A; Nakamura T; Kobayashi Y
    Opt Express; 2017 Oct; 25(21):26020-26028. PubMed ID: 29041264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal-noise-limited higher-order mode locking of a reference cavity.
    Zeng XY; Ye YX; Shi XH; Wang ZY; Deng K; Zhang J; Lu ZH
    Opt Lett; 2018 Apr; 43(8):1690-1693. PubMed ID: 29652341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1 Hz linewidth Ti:sapphire laser as local oscillator for (40)Ca(+) optical clocks.
    Bian W; Huang Y; Guan H; Liu P; Ma L; Gao K
    Rev Sci Instrum; 2016 Jun; 87(6):063121. PubMed ID: 27370440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ablation of porcine ligamentum flavum with Ho:YAG, q-switched Ho:YAG, and quadrupled Nd:YAG lasers.
    Johnson MR; Codd PJ; Hill WM; Boettcher T
    Lasers Surg Med; 2015 Dec; 47(10):839-51. PubMed ID: 26415136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal boundary layer limitations on the performance of micromachined microphones.
    Kuntzman ML; LoPresti JL; Du Y; Conklin WF; Naderyan V; Lee SB; Schafer D; Pedersen M; Loeppert PV
    J Acoust Soc Am; 2018 Nov; 144(5):2838. PubMed ID: 30522283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of the intensity noise and frequency stabilization of Nd:YAP laser with an ultra-low expansion Fabry-Perot cavity.
    Yu J; Qin Y; Yan Z; Lu H; Jia X
    Opt Express; 2019 Feb; 27(3):3247-3254. PubMed ID: 30732348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A compact ultranarrow high-power laser system for experiments with 578 nm ytterbium clock transition.
    Cappellini G; Lombardi P; Mancini M; Pagano G; Pizzocaro M; Fallani L; Catani J
    Rev Sci Instrum; 2015 Jul; 86(7):073111. PubMed ID: 26233360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Lasing Performance of Tm, Ho:YLF Lasers by use of Single and Double Cavities.
    Izawa J; Nakajima H; Hara H; Arimoto Y
    Appl Opt; 2000 May; 39(15):2418-21. PubMed ID: 18345153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excellent performance of a cryogenic Nd:YAlO
    Song YJ; Xu YZ; Meng S; Jiang XX; Shao CF; Song ZX; Zong N; Wang ZM; Bo Y; Wang XJ; Lin ZS; Peng QJ
    Opt Lett; 2021 May; 46(10):2425-2428. PubMed ID: 33988600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization.
    Lim J; Savchenkov AA; Dale E; Liang W; Eliyahu D; Ilchenko V; Matsko AB; Maleki L; Wong CW
    Nat Commun; 2017 Mar; 8(1):8. PubMed ID: 28364116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time resolved Fabry-Perot measurements of cavity temperature in pulsed QCLs.
    Gundogdu S; Pisheh HS; Demir A; Gunoven M; Aydinli A; Sirtori C
    Opt Express; 2018 Mar; 26(6):6572-6580. PubMed ID: 29609345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution.
    Mahamdeh M; Schäffer E
    Opt Express; 2009 Sep; 17(19):17190-9. PubMed ID: 19770938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Very high or close to zero thermal expansion by the variation of the Sr/Ba ratio in Ba(1-x)Sr(x)Zn2Si2O7- solid solutions.
    Thieme C; Rüssel C
    Dalton Trans; 2016 Mar; 45(11):4888-95. PubMed ID: 26877171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical and experimental investigation of the thermal effects within body cavities during transendoscopical CO2 laser-based surgery.
    Dayan A; Goren A; Gannot I
    Lasers Surg Med; 2004; 35(1):18-27. PubMed ID: 15278924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesopores induced zero thermal expansion in single-crystal ferroelectrics.
    Ren Z; Zhao R; Chen X; Li M; Li X; Tian H; Zhang Z; Han G
    Nat Commun; 2018 Apr; 9(1):1638. PubMed ID: 29692407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users.
    Vierling KT; Lorenz TJ; Cunningham P; Potterf K
    Int J Biometeorol; 2018 Apr; 62(4):553-564. PubMed ID: 29105010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.