BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 3461481)

  • 1. Chemical and functional correlates of postischemic renal ATP levels.
    Stromski ME; Cooper K; Thulin G; Gaudio KM; Siegel NJ; Shulman RG
    Proc Natl Acad Sci U S A; 1986 Aug; 83(16):6142-5. PubMed ID: 3461481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic studies of postischemic acute renal failure in the rat.
    Trifillis AL; Kahng MW; Cowley RA; Trump BF
    Exp Mol Pathol; 1984 Apr; 40(2):155-68. PubMed ID: 6705889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced recovery of renal ATP with postischemic infusion of ATP-MgCl2 determined by 31P-NMR.
    Siegel NJ; Avison MJ; Reilly HF; Alger JR; Shulman RG
    Am J Physiol; 1983 Oct; 245(4):F530-4. PubMed ID: 6605093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic and functional consequences of inhibiting adenosine deaminase during renal ischemia in rats.
    Stromski ME; van Waarde A; Avison MJ; Thulin G; Gaudio KM; Kashgarian M; Shulman RG; Siegel NJ
    J Clin Invest; 1988 Nov; 82(5):1694-9. PubMed ID: 3263396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brief intermittent reperfusion during renal ischemia: effects on adenine nucleotides, oxidant stress, and the severity of renal failure.
    Thornton MA; Zager RA
    J Lab Clin Med; 1990 May; 115(5):564-71. PubMed ID: 2341758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional responses within the kidney to ischemia: assessment of adenine nucleotide and catabolite profiles.
    Zager RA; Gmur DJ; Bredl CR; Eng MJ; Fisher L
    Biochim Biophys Acta; 1990 Jul; 1035(1):29-36. PubMed ID: 2383578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postischemic ATP-MgCl2 provides precursors for resynthesis of cellular ATP in rats.
    Stromski ME; Cooper K; Thulin G; Avison MJ; Gaudio KM; Shulman RG; Siegel NJ
    Am J Physiol; 1986 May; 250(5 Pt 2):F834-7. PubMed ID: 3486599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of nucleoside uptake in renal postischemic ATP synthesis.
    Van Waarde A; Avison MJ; Thulin G; Gaudio KM; Shulman RG; Siegel NJ
    Am J Physiol; 1992 Jun; 262(6 Pt 2):F1092-9. PubMed ID: 1621813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenine nucleotides of ischemic intestine do not reflect injury.
    Canada AT; Coleman LR; Fabian MA; Bollinger RR
    J Surg Res; 1993 Oct; 55(4):416-21. PubMed ID: 8412129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pentoxifylline on the ischemic rat kidney monitored by 31P NMR spectroscopy in vivo.
    Ellermann J; GrĂ¼nder W; Keller T
    Biomed Biochim Acta; 1988; 47(6):515-21. PubMed ID: 3240301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protection of the kidney against ischemic injury by inhibition of 5'-nucleotidase.
    Van Waarde A; Stromski ME; Thulin G; Gaudio KM; Kashgarian M; Shulman RG; Siegel NJ
    Am J Physiol; 1989 Feb; 256(2 Pt 2):F298-305. PubMed ID: 2537026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of adenosine and theophylline on the recovery of adenine nucleotides in postischemic cultured renal tubular cells.
    Cadnapaphornchai P; Kellner D; Golembieski A; McDonald FD
    J Pharmacol Exp Ther; 1991 May; 257(2):774-80. PubMed ID: 2033518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenine nucleotide metabolism during hepatic ischemia and subsequent blood reflow periods and its relation to organ viability.
    Marubayashi S; Takenaka M; Dohi K; Ezaki H; Kawasaki T
    Transplantation; 1980 Oct; 30(4):294-6. PubMed ID: 7445052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 31P NMR studies of energy metabolism in perfused rat kidney.
    Rhodes RS; Jentoft JE; Barr RG; Robinson AV
    J Surg Res; 1983 Nov; 35(5):373-82. PubMed ID: 6632864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral energy metabolism during hypoxia-ischemia and early recovery in immature rats.
    Yager JY; Brucklacher RM; Vannucci RC
    Am J Physiol; 1992 Mar; 262(3 Pt 2):H672-7. PubMed ID: 1558174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disassociation of postischemic recovery of renal adenosine triphosphate and cellular integrity.
    Boydstun II; Thulin G; Zhu XH; Avison MJ; Gaudio KM; Siegel NJ
    Pediatr Res; 1993 Jun; 33(6):595-7. PubMed ID: 8378118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 31P NMR visibility of ATP in perfused rat liver remains about 90%, unaffected by changes of metabolic state.
    Masson S; Quistorff B
    Biochemistry; 1992 Aug; 31(33):7488-93. PubMed ID: 1510935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [31P NMR studies in isolated rat kidney].
    GrĂ¼nder W; Wischke UW
    Biomed Biochim Acta; 1985; 44(7-8):1139-49. PubMed ID: 3878704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of normal and ischemically injured rabbit kidneys during perfusion for 48 hours at 10 C.
    Pegg DE; Wusteman MC; Foreman J
    Transplantation; 1981 Nov; 32(5):437-43. PubMed ID: 7330963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postischemic hemodynamics and recovery of renal adenosine triphosphate.
    Gaudio KM; Stromski M; Thulin G; Ardito T; Kashgarian M; Siegel NJ
    Am J Physiol; 1986 Oct; 251(4 Pt 2):F603-9. PubMed ID: 3490185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.