These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34614888)

  • 1. Design of a freeform two-reflector system to collimate and shape a point source distribution.
    van Roosmalen AH; Anthonissen MJH; IJzerman WL; Ten Thije Boonkkamp JHM
    Opt Express; 2021 Aug; 29(16):25605-25625. PubMed ID: 34614888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeform lens design for a point source and far-field target.
    Romijn LB; Ten Thije Boonkkamp JHM; IJzerman WL
    J Opt Soc Am A Opt Image Sci Vis; 2019 Nov; 36(11):1926-1939. PubMed ID: 31873712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating-function approach for double freeform lens design.
    Romijn LB; Anthonissen MJH; Ten Thije Boonkkamp JHM; IJzerman WL
    J Opt Soc Am A Opt Image Sci Vis; 2021 Mar; 38(3):356-368. PubMed ID: 33690465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single freeform surface design for prescribed input wavefront and target irradiance.
    Bösel C; Gross H
    J Opt Soc Am A Opt Image Sci Vis; 2017 Sep; 34(9):1490-1499. PubMed ID: 29036152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fresnel reflections in inverse freeform lens design.
    van Roosmalen AH; Anthonissen MJH; IJzerman WL; Ten Thije Boonkkamp JHM
    J Opt Soc Am A Opt Image Sci Vis; 2022 Jun; 39(6):1045-1052. PubMed ID: 36215534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the characteristics of a light source and target on the Monge-Ampére equation method in freeform optics design.
    Wu R; Benítez P; Zhang Y; Miñano JC
    Opt Lett; 2014 Feb; 39(3):634-7. PubMed ID: 24487884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial design with L(2) Monge-Kantorovich theory for the Monge-Ampère equation method in freeform surface illumination design.
    Wu R; Zhang Y; Sulman MM; Zheng Z; Benítez P; Miñano JC
    Opt Express; 2014 Jun; 22(13):16161-77. PubMed ID: 24977868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing double freeform optical surfaces for controlling both irradiance and wavefront.
    Feng Z; Huang L; Jin G; Gong M
    Opt Express; 2013 Nov; 21(23):28693-701. PubMed ID: 24514381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ray-mapping approach in double freeform surface design for collimated beam shaping beyond the paraxial approximation.
    Bösel C; Worku NG; Gross H
    Appl Opt; 2017 May; 56(13):3679-3688. PubMed ID: 28463252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeform surface off-axis illumination design with the Monge-Ampère equation method in optical lithography.
    Zhang Y; Wu R; Zheng Z
    Appl Opt; 2014 Nov; 53(31):7296-303. PubMed ID: 25402891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freeform illumination design: a nonlinear boundary problem for the elliptic Monge-Ampére equation.
    Wu R; Xu L; Liu P; Zhang Y; Zheng Z; Li H; Liu X
    Opt Lett; 2013 Jan; 38(2):229-31. PubMed ID: 23454971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast freeform reflector generation usingsource-target maps.
    Fournier FR; Cassarly WJ; Rolland JP
    Opt Express; 2010 Mar; 18(5):5295-304. PubMed ID: 20389542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composite method for precise freeform optical beam shaping.
    Feng Z; Froese BD; Liang R
    Appl Opt; 2015 Nov; 54(31):9364-9. PubMed ID: 26560594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beam shaping system design using double freeform optical surfaces.
    Feng Z; Huang L; Gong M; Jin G
    Opt Express; 2013 Jun; 21(12):14728-35. PubMed ID: 23787660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freeform reflector light source used for space traceable spectral radiance calibration on the solar reflected band.
    Jiang Y; Tian J; Fang W; Hu D; Ye X
    Opt Express; 2023 Feb; 31(5):8049-8067. PubMed ID: 36859923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double freeform illumination design for prescribed wavefronts and irradiances.
    Bösel C; Gross H
    J Opt Soc Am A Opt Image Sci Vis; 2018 Feb; 35(2):236-243. PubMed ID: 29400890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unified mathematical framework for a class of fundamental freeform optical systems.
    Anthonissen MJH; Romijn LB; Ten Thije Boonkkamp JHM; IJzerman WL
    Opt Express; 2021 Sep; 29(20):31650-31664. PubMed ID: 34615254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeform optical design of beam shaping systems with variable illumination properties.
    Yang L; Shen F; Ding Z; Tao X; Zheng Z; Wu F; Li Y; Wu R
    Opt Express; 2021 Sep; 29(20):31993-32005. PubMed ID: 34615279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing illumination lenses and mirrors by the numerical solution of Monge-Ampère equations.
    Brix K; Hafizogullari Y; Platen A
    J Opt Soc Am A Opt Image Sci Vis; 2015 Nov; 32(11):2227-36. PubMed ID: 26560938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simplified freeform optics design for complicated laser beam shaping.
    Feng Z; Froese BD; Liang R; Cheng D; Wang Y
    Appl Opt; 2017 Nov; 56(33):9308-9314. PubMed ID: 29216104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.