BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 34614910)

  • 1. Single-photon detection for MIMO underwater wireless optical communication enabled by arrayed LEDs and SiPMs.
    Li J; Ye D; Fu K; Wang L; Piao J; Wang Y
    Opt Express; 2021 Aug; 29(16):25922-25944. PubMed ID: 34614910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photon-counting schemes for MIMO underwater wireless optical communication with arrayed PMTs.
    Li J; Ye D; Fu K; Wang L; Piao J; Li C; Wang Y
    Appl Opt; 2022 Jan; 61(2):403-409. PubMed ID: 35200876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Over 10 attenuation length gigabits per second underwater wireless optical communication using a silicon photomultiplier (SiPM) based receiver.
    Zhang L; Tang X; Sun C; Chen Z; Li Z; Wang H; Jiang R; Shi W; Zhang A
    Opt Express; 2020 Aug; 28(17):24968-24980. PubMed ID: 32907028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of a 2 × 2 MIMO-UWOC system with large spot against air bubbles.
    Chen X; Dai Y; Tong Z; Yang X; Li X; Song G; Zou H; Jia B; Qin S; Zhang Z; Zhao J; Xu J
    Appl Opt; 2022 Jan; 61(1):41-48. PubMed ID: 35200800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photon-counting-based underwater wireless optical communication employing orbital angular momentum multiplexing.
    Hei X; Zhu Q; Gai L; Chen X; Liu C; Gu Y; Li W
    Opt Express; 2023 Jun; 31(12):19990-20004. PubMed ID: 37381403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal.
    Kong M; Chen Y; Sarwar R; Sun B; Xu Z; Han J; Chen J; Qin H; Xu J
    Opt Express; 2018 Feb; 26(3):3087-3097. PubMed ID: 29401841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Underwater wireless optical communication employing polarization multiplexing modulation and photon counting detection.
    Gai L; Hei X; Zhu Q; Yu Y; Yang Y; Chen F; Gu Y; Wang G; Li W
    Opt Express; 2022 Nov; 30(24):43301-43316. PubMed ID: 36523031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Underwater Wireless Optical Communication System Based on LEDs and Estimation of Maximum Communication Distance.
    Zhang M; Zhou H
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-reach underwater wireless optical communication with relaxed link alignment enabled by optical combination and arrayed sensitive receivers.
    Zhao M; Li X; Chen X; Tong Z; Lyu W; Zhang Z; Xu J
    Opt Express; 2020 Nov; 28(23):34450-34460. PubMed ID: 33182914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CMOS monolithic photodetector with a built-in 2-dimensional light direction sensor for laser diode based underwater wireless optical communications.
    Lv Z; He G; Qiu C; Fan Y; Wang H; Liu Z
    Opt Express; 2021 May; 29(11):16197-16204. PubMed ID: 34154188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-based white-light source for high-speed underwater wireless optical communication and high-efficiency underwater solid-state lighting.
    Liu X; Yi S; Zhou X; Zhang S; Fang Z; Qiu ZJ; Hu L; Cong C; Zheng L; Liu R; Tian P
    Opt Express; 2018 Jul; 26(15):19259-19274. PubMed ID: 30114184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode.
    Oubei HM; Li C; Park KH; Ng TK; Alouini MS; Ooi BS
    Opt Express; 2015 Aug; 23(16):20743-8. PubMed ID: 26367926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equalization equal gain combining for a single-input to multiple-output underwater wireless optical communication system under a Gaussian beam.
    Yang Y; Qiu X; Zhang J; Nie H; He H; Min Z
    Appl Opt; 2023 Aug; 62(23):G90-G100. PubMed ID: 37707068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational temporal ghost imaging for long-distance underwater wireless optical communication.
    Chen X; Jin M; Chen H; Wang Y; Qiu P; Cui X; Sun B; Tian P
    Opt Lett; 2021 Apr; 46(8):1938-1941. PubMed ID: 33857110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time underwater wireless optical communication and positioning an integrated system based on angular diversity SiPMs.
    Zhang J; Yu Y; Gao G; Guo Y
    Opt Lett; 2024 Jul; 49(13):3749-3752. PubMed ID: 38950258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The silicon photomultiplier: fundamentals and applications of a modern solid-state photon detector.
    Gundacker S; Heering A
    Phys Med Biol; 2020 Aug; 65(17):17TR01. PubMed ID: 32109891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 100-m/3-Gbps underwater wireless optical transmission using a wideband photomultiplier tube (PMT).
    Fei C; Wang Y; Du J; Chen R; Lv N; Zhang G; Tian J; Hong X; He S
    Opt Express; 2022 Jan; 30(2):2326-2337. PubMed ID: 35209375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of heterodyne differential phase-shift-keying underwater wireless optical communication systems in gamma-gamma-distributed turbulence.
    Fu Y; Du Y
    Appl Opt; 2018 Mar; 57(9):2057-2063. PubMed ID: 29603993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photon-Counting Underwater Optical Wireless Communication for Reliable Video Transmission Using Joint Source-Channel Coding Based on Distributed Compressive Sensing.
    Hong Z; Yan Q; Li Z; Zhan T; Wang Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30823639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Underwater wireless optical communication system using a 16-QAM modulated 450-nm laser diode based on an FPGA.
    Wang J; Tian C; Yang X; Shi W; Niu Q; Aaron Gulliver T
    Appl Opt; 2019 Jun; 58(16):4553-4559. PubMed ID: 31251271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.