These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34614970)

  • 1. Adaptive multi-layer filters incorporated with Volterra filters for impairment compensation including transmitter and receiver nonlinearity.
    Arikawa M; Hayashi K
    Opt Express; 2021 Aug; 29(18):28366-28387. PubMed ID: 34614970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmitter and receiver impairment monitoring using adaptive multi-layer linear and widely linear filter coefficients controlled by stochastic gradient descent.
    Arikawa M; Hayashi K
    Opt Express; 2021 Apr; 29(8):11548-11561. PubMed ID: 33984932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensation and monitoring of transmitter and receiver impairments in 10,000-km single-mode fiber transmission by adaptive multi-layer filters with augmented inputs.
    Arikawa M; Sato M; Hayashi K
    Opt Express; 2022 Jun; 30(12):20333-20359. PubMed ID: 36224782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive equalization of transmitter and receiver IQ skew by multi-layer linear and widely linear filters with deep unfolding.
    Arikawa M; Hayashi K
    Opt Express; 2020 Aug; 28(16):23478-23494. PubMed ID: 32752344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning-based digital back propagation to compensate for fiber nonlinearity considering self-phase and cross-phase modulation for wavelength-division multiplexed systems.
    Inoue T; Matsumoto R; Namiki S
    Opt Express; 2022 Apr; 30(9):14851-14872. PubMed ID: 35473220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-impairment monitoring from adaptive finite-impulse-response filters in a digital coherent receiver.
    Faruk MS; Mori Y; Zhang C; Igarashi K; Kikuchi K
    Opt Express; 2010 Dec; 18(26):26929-36. PubMed ID: 21196969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-domain adaptive MIMO filter with fractional oversampling using stochastic gradient descent for long-haul transmission over coupled 4-core fibers.
    Arikawa M; Hayashi K
    Opt Express; 2023 Apr; 31(8):13104-13124. PubMed ID: 37157456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient nonlinear equalizer for intra-channel nonlinearity compensation for next generation agile and dynamically reconfigurable optical networks.
    Malekiha M; Tselniker I; Plant DV
    Opt Express; 2016 Feb; 24(4):4097-108. PubMed ID: 26907060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-sensitively amplified wavelength-division multiplexed optical transmission systems.
    Vijayan K; He Z; Foo B; Schröder J; Karlsson M; Andrekson PA
    Opt Express; 2021 Oct; 29(21):33086-33096. PubMed ID: 34809126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatic dispersion compensation in coherent transmission system using digital filters.
    Xu T; Jacobsen G; Popov S; Li J; Vanin E; Wang K; Friberg AT; Zhang Y
    Opt Express; 2010 Jul; 18(15):16243-57. PubMed ID: 20721010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent detection in optical fiber systems.
    Ip E; Lau AP; Barros DJ; Kahn JM
    Opt Express; 2008 Jan; 16(2):753-91. PubMed ID: 18542153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatic dispersion mitigation in long-haul fiber-optic communication networks by sub-band partitioning.
    Malekiha M; Tselniker I; Plant DV
    Opt Express; 2015 Dec; 23(25):32654-63. PubMed ID: 26699054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic compensation of chromatic dispersion using a digital coherent receiver.
    Savory SJ; Gavioli G; Killey RI; Bayvel P
    Opt Express; 2007 Mar; 15(5):2120-6. PubMed ID: 19532448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectrally-efficient all-optical OFDM by WSS and AWG.
    Hoxha J; Morosi J; Shimizu S; Martelli P; Boffi P; Wada N; Cincotti G
    Opt Express; 2015 May; 23(9):10986-96. PubMed ID: 25969193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation-based transceiver in-phase/ quadrature skew in-field calibration in dual-polarization coherent optical transmission system.
    Wang X; Li F; Yin M; Luo Z; Qin S; Wang W; Cai Y; Li Z
    Opt Express; 2022 Jun; 30(13):22712-22729. PubMed ID: 36224963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field and lab experimental demonstration of nonlinear impairment compensation using neural networks.
    Zhang S; Yaman F; Nakamura K; Inoue T; Kamalov V; Jovanovski L; Vusirikala V; Mateo E; Inada Y; Wang T
    Nat Commun; 2019 Jul; 10(1):3033. PubMed ID: 31292442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of fully interpretable neural networks for digital coherent demodulation.
    Huang X; Jiang W; Yi X; Zhang J; Jin T; Zhang Q; Xu B; Qiu K
    Opt Express; 2022 Sep; 30(20):35526-35538. PubMed ID: 36258502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low overhead and nonlinear-tolerant adaptive zero-guard-interval CO-OFDM.
    Wang W; Zhuge Q; Gao Y; Qiu M; Morsy-Osman M; Chagnon M; Xu X; Plant DV
    Opt Express; 2014 Jul; 22(15):17810-22. PubMed ID: 25089402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of nonlinear and polarization effects in coherent systems.
    Xie C
    Opt Express; 2011 Dec; 19(26):B915-30. PubMed ID: 22274120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-step digital backpropagation for subcarrier-multiplexing transmissions.
    Lun H; Zhuge Q; Xiao Z; Fu S; Tang M; Liu D; Hu W; Plant DV
    Opt Express; 2019 Dec; 27(25):36680-36690. PubMed ID: 31873441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.