These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34614971)

  • 1. Underwater ghost imaging based on generative adversarial networks with high imaging quality.
    Yang X; Yu Z; Xu L; Hu J; Wu L; Yang C; Zhang W; Zhang J; Zhang Y
    Opt Express; 2021 Aug; 29(18):28388-28405. PubMed ID: 34614971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deblurring Ghost Imaging Reconstruction Based on Underwater Dataset Generated by Few-Shot Learning.
    Yang X; Yu Z; Jiang P; Xu L; Hu J; Wu L; Zou B; Zhang Y; Zhang J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distorted underwater image reconstruction for an autonomous underwater vehicle based on a self-attention generative adversarial network.
    Li T; Yang Q; Rong S; Chen L; He B
    Appl Opt; 2020 Nov; 59(32):10049-10060. PubMed ID: 33175779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Underwater computational ghost imaging.
    Le M; Wang G; Zheng H; Liu J; Zhou Y; Xu Z
    Opt Express; 2017 Sep; 25(19):22859-22868. PubMed ID: 29041592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised Low-Light Image Enhancement Based on Generative Adversarial Network.
    Yu W; Zhao L; Zhong T
    Entropy (Basel); 2023 Jun; 25(6):. PubMed ID: 37372276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Color computational ghost imaging based on a generative adversarial network.
    Ni Y; Zhou D; Yuan S; Bai X; Xu Z; Chen J; Li C; Zhou X
    Opt Lett; 2021 Apr; 46(8):1840-1843. PubMed ID: 33857083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Underwater ghost imaging with detection distance up to 9.3 attenuation lengths.
    Li Y; Chen M; Qi J; Deng C; Du L; Bo Z; Han C; Mao Z; He Y; Shao X; Han S
    Opt Express; 2023 Nov; 31(23):38457-38474. PubMed ID: 38017952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DRGAN: Dense Residual Generative Adversarial Network for Image Enhancement in an Underwater Autonomous Driving Device.
    Qian J; Li H; Zhang B; Lin S; Xing X
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
    Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L
    Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-supervised generative adversarial networks for the segmentation of the left ventricle in pediatric MRI.
    Decourt C; Duong L
    Comput Biol Med; 2020 Aug; 123():103884. PubMed ID: 32658792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative adversarial networks with decoder-encoder output noises.
    Zhong G; Gao W; Liu Y; Yang Y; Wang DH; Huang K
    Neural Netw; 2020 Jul; 127():19-28. PubMed ID: 32315932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial orthogonal attention generative adversarial network for MRI reconstruction.
    Zhou W; Du H; Mei W; Fang L
    Med Phys; 2021 Feb; 48(2):627-639. PubMed ID: 33111361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Generative Adversarial Network-Based Image Denoiser Controlling Heterogeneous Losses.
    Cho SI; Park JH; Kang SJ
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33567620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generative Adversarial Networks and Perceptual Losses for Video Super-Resolution.
    Lucas A; Lopez-Tapia S; Molina R; Katsaggelos AK
    IEEE Trans Image Process; 2019 Jul; 28(7):3312-3327. PubMed ID: 30714918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks.
    Gaj S; Yang M; Nakamura K; Li X
    Magn Reson Med; 2020 Jul; 84(1):437-449. PubMed ID: 31793071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourier single pixel imaging reconstruction method based on the U-net and attention mechanism at a low sampling rate.
    Jiang P; Liu J; Wu L; Xu L; Hu J; Zhang J; Zhang Y; Yang X
    Opt Express; 2022 May; 30(11):18638-18654. PubMed ID: 36221661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generative Adversarial Networks-Based Semi-Supervised Automatic Modulation Recognition for Cognitive Radio Networks.
    Li M; Li O; Liu G; Zhang C
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30428617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.