These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34614973)

  • 1. Multicore fiber integrated beam shaping devices for long-range plasmonic trapping.
    Wang M; Guan C; Cheng L; Liu J; Yang J; Shi J; Liu Z; Yang J; Yuan L
    Opt Express; 2021 Aug; 29(18):28416-28426. PubMed ID: 34614973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact all-fiber plasmonic Airy-like beam generator.
    Guan C; Ding M; Shi J; Wang P; Hua P; Yuan L; Brambilla G
    Opt Lett; 2014 Mar; 39(5):1113-6. PubMed ID: 24690684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trapping forces in a multiple-beam fiber-optic trap.
    Sidick E; Collins SD; Knoesen A
    Appl Opt; 1997 Sep; 36(25):6423-33. PubMed ID: 18259500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scannable plasmonic trapping using a gold stripe.
    Wang K; Schonbrun E; Steinvurzel P; Crozier KB
    Nano Lett; 2010 Sep; 10(9):3506-11. PubMed ID: 20715811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable multiple plasmonic bending beams via polarization of incident waves.
    Li H; Qu Y; Ullah H; Zhang B; Zhang Z
    Opt Express; 2017 Nov; 25(24):29659-29666. PubMed ID: 29221003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Twin-core fiber optical tweezers.
    Yuan L; Liu Z; Yang J; Guan C
    Opt Express; 2008 Mar; 16(7):4559-66. PubMed ID: 18542553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization Controllable Device for Simultaneous Generation of Surface Plasmon Polariton Bessel-Like Beams and Bottle Beams.
    Qiu P; Lv T; Zhang Y; Yu B; Lian J; Jing M; Zhang D
    Nanomaterials (Basel); 2018 Nov; 8(12):. PubMed ID: 30486268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Writing Bragg Gratings in Multicore Fibers.
    Lindley EY; Min SS; Leon-Saval SG; Cvetojevic N; Lawrence J; Ellis SC; Bland-Hawthorn J
    J Vis Exp; 2016 Apr; (110):. PubMed ID: 27167576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental observation and analysis of all-fiber plasmonic double Airy beams.
    Guan C; Ding M; Shi J; Hua P; Wang P; Yuan L; Brambilla G
    Opt Express; 2014 Jul; 22(15):18365-71. PubMed ID: 25089455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration.
    Loozen GB; Karuna A; Fanood MMR; Schreuder E; Caro J
    Beilstein J Nanotechnol; 2020; 11():829-842. PubMed ID: 32551208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure.
    Wei H; Tian X; Pan D; Chen L; Jia Z; Xu H
    Nano Lett; 2015 Jan; 15(1):560-4. PubMed ID: 25514318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic trapping and tuning of a gold nanoparticle dimer.
    Shen Z; Su L
    Opt Express; 2016 Mar; 24(5):4801-4811. PubMed ID: 29092308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization-based dynamic manipulation of Bessel-like surface plasmon polaritons beam.
    Wang S; Wang S; Zhang Y
    Opt Express; 2018 Mar; 26(5):5461-5468. PubMed ID: 29529748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-beam interference from a lensed multicore fiber and its application to optical trapping.
    Barron AL; Kar AK; Bookey HT
    Opt Express; 2012 Oct; 20(21):23156-61. PubMed ID: 23188280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shift of the surface plasmon polariton interference pattern in symmetrical arc slit structures and its application to Rayleigh metallic particle trapping.
    Bai C; Chen J; Zhang Y; Kanwal S; Zhang D; Zhan Q
    Opt Express; 2020 Jul; 28(14):21210-21219. PubMed ID: 32680166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation of multiple on-axis foci and ultra-long focal depth for SPPs.
    Wang J; Chen C; Sun Z
    Opt Express; 2017 Jan; 25(2):1555-1563. PubMed ID: 28158037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro particle launcher/cleaner based on optical trapping technology.
    Liu Z; Liang P; Zhang Y; Zhang Y; Zhao E; Yang J; Yuan L
    Opt Express; 2015 Apr; 23(7):8650-8. PubMed ID: 25968703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic tomography of optical vortices.
    Chimento PF; 't Hooft GW; Eliel ER
    Opt Lett; 2010 Nov; 35(22):3775-7. PubMed ID: 21081993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface.
    Zhang Y; Wang J; Shen J; Man Z; Shi W; Min C; Yuan G; Zhu S; Urbach HP; Yuan X
    Nano Lett; 2014 Nov; 14(11):6430-6. PubMed ID: 25302534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.