These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34614999)

  • 21. Core-shell Fe
    Qiao M; Tian Y; Li J; He X; Lei X; Zhang Q; Ma M; Meng X
    J Colloid Interface Sci; 2022 Mar; 609():330-340. PubMed ID: 34896833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bionic structures for optimizing the design of stealth materials.
    Xu Z; Li J; Li J; Du J; Li T; Zeng W; Qiu J; Meng F
    Phys Chem Chem Phys; 2023 Feb; 25(8):5913-5925. PubMed ID: 36779513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance.
    Zhang C; Huang C; Pu M; Song J; Zhao Z; Wu X; Luo X
    Sci Rep; 2017 Jul; 7(1):5652. PubMed ID: 28720892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stealth radome with an ultra-broad transparent window and a high selectivity transition band.
    Wang D; Zhuang Y; Shen L; Meng X; Wang G; Tang S; Cai T
    Opt Express; 2022 May; 30(10):16009-16019. PubMed ID: 36221454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene Based Controllable Broadband Terahertz Metamaterial Absorber with Transmission Band.
    Zhou Q; Zha S; Liu P; Liu C; Bian LA; Zhang J; Liu H; Ding L
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30501033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Meta-Dome for Broadband Radar Absorbing Structure.
    Jeong H; Nguyen TT; Lim S
    Sci Rep; 2018 Dec; 8(1):17893. PubMed ID: 30559365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MEMS terahertz-to-infrared band converter using frequency selective planar metamaterial.
    Alves F; Pimental L; Grbovic D; Karunasiri G
    Sci Rep; 2018 Aug; 8(1):12466. PubMed ID: 30127458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multispectral meta-film design: simultaneous realization of wideband microwave absorption, low infrared emissivity, and visible transparency.
    Min P; Song Z; Yang L; Ralchenko VG; Zhu J
    Opt Express; 2022 Aug; 30(18):32317-32332. PubMed ID: 36242296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transparent and ultra-wideband metamaterial absorber using coupled hexagonal combined elements.
    Jiang H; Yang W; Lei S; Hu H; Chen B; Bao Y; He Z
    Opt Express; 2021 Aug; 29(18):29439-29448. PubMed ID: 34615053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective dual-band metamaterial perfect absorber for infrared stealth technology.
    Kim J; Han K; Hahn JW
    Sci Rep; 2017 Jul; 7(1):6740. PubMed ID: 28751736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth.
    Zhao L; Liu H; He Z; Dong S
    Appl Opt; 2018 Mar; 57(8):1757-1764. PubMed ID: 29521956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultra-Wideband and Wide-Angle Microwave Metamaterial Absorber.
    Begaud X; Lepage AC; Varault S; Soiron M; Barka A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of an inverse distance weighted active infrared stealth scheme using the repulsive particle swarm optimization algorithm.
    Han KI; Kim DH; Choi JH; Kim TK
    Appl Opt; 2018 Apr; 57(12):3072-3077. PubMed ID: 29714339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.
    Balal N; Pinhasi GA; Pinhasi Y
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27223286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabry-Perot-resonator-coupled metal pattern metamaterial for infrared suppression and radiative cooling.
    Liu D; Xu Y; Xuan Y
    Appl Opt; 2020 Aug; 59(23):6861-6867. PubMed ID: 32788776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hierarchical metamaterials for laser-infrared-microwave compatible camouflage.
    Feng X; Xie X; Pu M; Ma X; Guo Y; Li X; Luo X
    Opt Express; 2020 Mar; 28(7):9445-9453. PubMed ID: 32225551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic-algorithm-empowered metasurface design: simultaneous realization of high microwave frequency-selection and low infrared surface-emissivity.
    Zhu R; Zhang Z; Wang J; Xu C; Sui S; Wang X; Liu T; Zhu Y; Zhang L; Wang J; Qu S
    Opt Express; 2021 Jun; 29(13):20150-20159. PubMed ID: 34266110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-adaptive control of infrared emissivity in a solution-processed plasmonic structure.
    Ono M; Takata M; Shirata M; Yoshihiro T; Tani T; Naya M; Saiki T
    Opt Express; 2021 Oct; 29(22):36048-36060. PubMed ID: 34809025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible metamaterial absorbers for stealth applications at terahertz frequencies.
    Iwaszczuk K; Strikwerda AC; Fan K; Zhang X; Averitt RD; Jepsen PU
    Opt Express; 2012 Jan; 20(1):635-43. PubMed ID: 22274387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms.
    Su J; Lu Y; Zhang H; Li Z; Lamar Yang Y; Che Y; Qi K
    Sci Rep; 2017 Feb; 7():42283. PubMed ID: 28181593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.