BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34615023)

  • 1. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Opt Express; 2021 Aug; 29(18):29056-29067. PubMed ID: 34615023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Sci Rep; 2017 Nov; 7(1):14533. PubMed ID: 29109398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexagonal arrays of gold triangles as plasmonic tweezers.
    Samadi M; Vasini S; Darbari S; Khorshad AA; Reihani SNS; Moravvej-Farshi MK
    Opt Express; 2019 May; 27(10):14754-14766. PubMed ID: 31163919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers.
    Aqhili A; Darbari S
    Sci Rep; 2021 Oct; 11(1):20656. PubMed ID: 34667247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Far-field position-tunable trapping of dielectric particles using a graphene-based plasmonic lens.
    Hemayat S; Darbari S
    Opt Express; 2022 Feb; 30(4):5512-5530. PubMed ID: 35209512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers.
    Bouloumis TD; Kotsifaki DG; Nic Chormaic S
    Nano Lett; 2023 Jun; 23(11):4723-4731. PubMed ID: 37256850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypothermal opto-thermophoretic tweezers.
    Kollipara PS; Li X; Li J; Chen Z; Ding H; Huang S; Qin Z; Zheng Y
    Res Sq; 2023 Jan; ():. PubMed ID: 36711861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypothermal opto-thermophoretic tweezers.
    Kollipara PS; Li X; Li J; Chen Z; Ding H; Kim Y; Huang S; Qin Z; Zheng Y
    Nat Commun; 2023 Aug; 14(1):5133. PubMed ID: 37612299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles.
    Chen J; Kang Z; Kong SK; Ho HP
    Opt Lett; 2015 Sep; 40(17):3926-9. PubMed ID: 26368677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optothermal Manipulations of Colloidal Particles and Living Cells.
    Lin L; Hill EH; Peng X; Zheng Y
    Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping.
    Kotsifaki DG; Truong VG; Chormaic SN
    Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced trapping properties induced by strong LSPR-exciton coupling in plasmonic tweezers.
    Jia P; Shi H; Liu R; Yan X; Sun X
    Opt Express; 2023 Dec; 31(26):44177-44189. PubMed ID: 38178495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical tweezing and binding at high irradiation powers on black-Si.
    Shoji T; Mototsuji A; Balčytis A; Linklater D; Juodkazis S; Tsuboi Y
    Sci Rep; 2017 Sep; 7(1):12298. PubMed ID: 28951618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules.
    Barik A; Zhang Y; Grassi R; Nadappuram BP; Edel JB; Low T; Koester SJ; Oh SH
    Nat Commun; 2017 Nov; 8(1):1867. PubMed ID: 29192277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gap Effect on Electric Field Enhancement and Photothermal Conversion in Gold Nanostructures.
    Chiba H; Kodama K; Okada K; Ichikawa Y; Motosuke M
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold cauldrons as efficient candidates for plasmonic tweezers.
    Khosravi MA; Aqhili A; Vasini S; Khosravi MH; Darbari S; Hajizadeh F
    Sci Rep; 2020 Nov; 10(1):19356. PubMed ID: 33168879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis.
    Lin L; Peng X; Wang M; Scarabelli L; Mao Z; Liz-Marzán LM; Becker MF; Zheng Y
    ACS Nano; 2016 Oct; 10(10):9659-9668. PubMed ID: 27640212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.