These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A simple and practical jump error removal method for fringe projection profilometry based on self-alignment technique. Ma M; Yao P; Deng H; Wang Y; Zhang J; Zhong X Rev Sci Instrum; 2018 Dec; 89(12):123109. PubMed ID: 30599636 [TBL] [Abstract][Full Text] [Related]
3. Multi-anchor spatial phase unwrapping for fringe projection profilometry. Xiang S; Yang Y; Deng H; Wu J; Yu L Opt Express; 2019 Nov; 27(23):33488-33503. PubMed ID: 31878417 [TBL] [Abstract][Full Text] [Related]
4. Ultrafast spatial phase unwrapping algorithm with accurately correcting transient phase error. Wu H; Cao Y; An H; Xu C; Li H Opt Lett; 2021 Dec; 46(24):6091-6094. PubMed ID: 34913923 [TBL] [Abstract][Full Text] [Related]
10. Evaluation method for noise-induced phase error in fringe projection profilometry. Wang J Appl Opt; 2022 Jul; 61(21):6167-6176. PubMed ID: 36256229 [TBL] [Abstract][Full Text] [Related]
11. High-accuracy 3D shape measurement of translucent objects by fringe projection profilometry. Xu Y; Zhao H; Jiang H; Li X Opt Express; 2019 Jun; 27(13):18421-18434. PubMed ID: 31252786 [TBL] [Abstract][Full Text] [Related]
12. Temporal phase unwrapping for fringe projection profilometry aided by recursion of Chebyshev polynomials. Xing S; Guo H Appl Opt; 2017 Feb; 56(6):1591-1602. PubMed ID: 28234364 [TBL] [Abstract][Full Text] [Related]
13. Fringe order correction for the absolute phase recovered by two selected spatial frequency fringe projections in fringe projection profilometry. Ding Y; Peng K; Yu M; Lu L; Zhao K Rev Sci Instrum; 2017 Aug; 88(8):083104. PubMed ID: 28863661 [TBL] [Abstract][Full Text] [Related]
14. Adaptive horizontal scaling method for speckle-assisted fringe projection profilometry. Yang D; Qiao D; Xia C; He Q Opt Express; 2023 Jan; 31(1):328-343. PubMed ID: 36606970 [TBL] [Abstract][Full Text] [Related]
15. Phase retrieval for objects in rain based on a combination of variational image decomposition and variational mode decomposition in FPP. Hong N; Tang C; Xu M; Lei Z Appl Opt; 2022 Aug; 61(23):6704-6713. PubMed ID: 36255748 [TBL] [Abstract][Full Text] [Related]
16. Light-field-based absolute phase unwrapping. Cai Z; Liu X; Chen Z; Tang Q; Gao BZ; Pedrini G; Osten W; Peng X Opt Lett; 2018 Dec; 43(23):5717-5720. PubMed ID: 30499976 [TBL] [Abstract][Full Text] [Related]
17. Fast fringe projection profilometry using 3 + 1 phase retrieval strategy and fringe order correction. Li F; Hu J; Zhang S; Hu Y; Xia C; Hao Q Appl Opt; 2023 Jan; 62(2):348-356. PubMed ID: 36630233 [TBL] [Abstract][Full Text] [Related]
18. Temporal phase unwrapping based on unequal phase-shifting code. An H; Cao Y; Li H; Zhang H IEEE Trans Image Process; 2023 Feb; PP():. PubMed ID: 37027540 [TBL] [Abstract][Full Text] [Related]
19. Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection. Zhang M; Chen Q; Tao T; Feng S; Hu Y; Li H; Zuo C Opt Express; 2017 Aug; 25(17):20381-20400. PubMed ID: 29041720 [TBL] [Abstract][Full Text] [Related]
20. Spatiotemporal phase unwrapping for the measurement of discontinuous objects in dynamic fringe-projection phase-shifting profilometry. Zhang H; Lalor MJ; Burton DR Appl Opt; 1999 Jun; 38(16):3534-41. PubMed ID: 18319954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]