These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34615159)

  • 1. Soliton based χ
    Smirnov S; Andryushkov V; Podivilov E; Sturman B; Breunig I
    Opt Express; 2021 Aug; 29(17):27434-27449. PubMed ID: 34615159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Walk-off controlled self-starting frequency combs in χ
    Smirnov S; Sturman B; Podivilov E; Breunig I
    Opt Express; 2020 Jun; 28(12):18006-18017. PubMed ID: 32680002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband frequency comb generation through cascaded quadratic nonlinearity in thin-film lithium niobate microresonators.
    Tang C; Nie M; Chen JY; Ma Z; Li Z; Xie Y; Sua YM; Huang SW; Huang YP
    Opt Lett; 2024 May; 49(9):2449-2452. PubMed ID: 38691741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From the Lugiato-Lefever equation to microresonator-based soliton Kerr frequency combs.
    Lugiato LA; Prati F; Gorodetsky ML; Kippenberg TJ
    Philos Trans A Math Phys Eng Sci; 2018 Nov; 376(2135):. PubMed ID: 30420551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency Comb Generation via Cascaded Second-Order Nonlinearities in Microresonators.
    Szabados J; Puzyrev DN; Minet Y; Reis L; Buse K; Villois A; Skryabin DV; Breunig I
    Phys Rev Lett; 2020 May; 124(20):203902. PubMed ID: 32501070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Octave-spanning Kerr soliton frequency combs in dispersion- and dissipation-engineered lithium niobate microresonators.
    Song Y; Hu Y; Zhu X; Yang K; Lončar M
    Light Sci Appl; 2024 Sep; 13(1):225. PubMed ID: 39223111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation.
    Kordts A; Pfeiffer MH; Guo H; Brasch V; Kippenberg TJ
    Opt Lett; 2016 Feb; 41(3):452-5. PubMed ID: 26907395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Kerr soliton comb generation in micro-resonator with interferometric back-coupling.
    Boggio JMC; Bodenmüller D; Ahmed S; Wabnitz S; Modotto D; Hansson T
    Nat Commun; 2022 Mar; 13(1):1292. PubMed ID: 35277485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators.
    Gong Z; Bruch A; Shen M; Guo X; Jung H; Fan L; Liu X; Zhang L; Wang J; Li J; Yan J; Tang HX
    Opt Lett; 2018 Sep; 43(18):4366-4369. PubMed ID: 30211865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipative Kerr solitons in optical microresonators.
    Kippenberg TJ; Gaeta AL; Lipson M; Gorodetsky ML
    Science; 2018 Aug; 361(6402):. PubMed ID: 30093576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breathing dissipative solitons in optical microresonators.
    Lucas E; Karpov M; Guo H; Gorodetsky ML; Kippenberg TJ
    Nat Commun; 2017 Sep; 8(1):736. PubMed ID: 28963496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Frequency Combs in Quadratically Nonlinear Resonators.
    Ricciardi I; Mosca S; Parisi M; Leo F; Hansson T; Erkintalo M; Maddaloni P; De Natale P; Wabnitz S; De Rosa M
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32102284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gate-tunable frequency combs in graphene-nitride microresonators.
    Yao B; Huang SW; Liu Y; Vinod AK; Choi C; Hoff M; Li Y; Yu M; Feng Z; Kwong DL; Huang Y; Rao Y; Duan X; Wong CW
    Nature; 2018 Jun; 558(7710):410-414. PubMed ID: 29892031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic chip-based soliton frequency combs covering the biological imaging window.
    Karpov M; Pfeiffer MHP; Liu J; Lukashchuk A; Kippenberg TJ
    Nat Commun; 2018 Mar; 9(1):1146. PubMed ID: 29559634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mode spectrum and temporal soliton formation in optical microresonators.
    Herr T; Brasch V; Jost JD; Mirgorodskiy I; Lihachev G; Gorodetsky ML; Kippenberg TJ
    Phys Rev Lett; 2014 Sep; 113(12):123901. PubMed ID: 25279630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soliton dual frequency combs in crystalline microresonators.
    Pavlov NG; Lihachev G; Koptyaev S; Lucas E; Karpov M; Kondratiev NM; Bilenko IA; Kippenberg TJ; Gorodetsky ML
    Opt Lett; 2017 Feb; 42(3):514-517. PubMed ID: 28146515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of stimulated Raman scattering on dark soliton generation in a silica microresonator.
    Choi G; Su J
    JPhys Photonics; 2023 Jan; 5(1):014001. PubMed ID: 36698962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally controlled comb generation and soliton modelocking in microresonators.
    Joshi C; Jang JK; Luke K; Ji X; Miller SA; Klenner A; Okawachi Y; Lipson M; Gaeta AL
    Opt Lett; 2016 Jun; 41(11):2565-8. PubMed ID: 27244415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the phase noise of a microresonator soliton comb.
    Nishimoto K; Minoshima K; Yasui T; Kuse N
    Opt Express; 2020 Jun; 28(13):19295-19303. PubMed ID: 32672209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency combs in a microring optical parametric oscillator.
    Villois A; Kondratiev N; Breunig I; Puzyrev DN; Skryabin DV
    Opt Lett; 2019 Sep; 44(18):4443-4446. PubMed ID: 31517901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.