These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34615167)

  • 21. Spatial filter based bessel-like beam for improved penetration depth imaging in fluorescence microscopy.
    Purnapatra SB; Bera S; Mondal PP
    Sci Rep; 2012; 2():692. PubMed ID: 23012646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope.
    Wang Z; Wei D; Wei L; He Y; Shi G; Wei X; Zhang Y
    J Biomed Opt; 2014 Aug; 19(8):086009. PubMed ID: 25117079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anisoplanatic adaptive optics in parallelized laser scanning microscopy.
    Pozzi P; Smith C; Carroll E; Wilding D; Soloviev O; Booth M; Vdovin G; Verhaegen M
    Opt Express; 2020 May; 28(10):14222-14236. PubMed ID: 32403465
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complex-Amplitude-Modulation Vectorial Excitation Beam for High-Resolution Observation of Deep Regions in Two-Photon Microscopy.
    Matsumoto N; Watanabe K; Konno A; Inoue T; Okazaki S
    Front Neurosci; 2022; 16():880178. PubMed ID: 35516810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry.
    Scrimgeour J; Curtis JE
    Opt Express; 2012 Jun; 20(13):14534-41. PubMed ID: 22714514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances in optical microscopy methods for subcellular imaging of thick biological tissues.
    Chen N; Rehman S; Sheppard CJ
    Crit Rev Biomed Eng; 2013; 41(4-5):393-403. PubMed ID: 24941415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive optics for structured illumination microscopy.
    Débarre D; Botcherby EJ; Booth MJ; Wilson T
    Opt Express; 2008 Jun; 16(13):9290-305. PubMed ID: 18575493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isotropic image in structured illumination microscopy patterned with a spatial light modulator.
    Chang BJ; Chou LJ; Chang YC; Chiang SY
    Opt Express; 2009 Aug; 17(17):14710-21. PubMed ID: 19687949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spherical aberration correction suitable for a wavefront controller.
    Itoh H; Matsumoto N; Inoue T
    Opt Express; 2009 Aug; 17(16):14367-73. PubMed ID: 19654844
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning.
    Wu Y; Rivenson Y; Wang H; Luo Y; Ben-David E; Bentolila LA; Pritz C; Ozcan A
    Nat Methods; 2019 Dec; 16(12):1323-1331. PubMed ID: 31686039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aberration correction in stimulated emission depletion microscopy to increase imaging depth in living brain tissue.
    Bancelin S; Mercier L; Murana E; Nägerl UV
    Neurophotonics; 2021 Jul; 8(3):035001. PubMed ID: 34136589
    [No Abstract]   [Full Text] [Related]  

  • 32. Aberration correction considering curved sample surface shape for non-contact two-photon excitation microscopy with spatial light modulator.
    Matsumoto N; Konno A; Inoue T; Okazaki S
    Sci Rep; 2018 Jun; 8(1):9252. PubMed ID: 29915203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens.
    Serov A; Rao R; Gösch M; Anhut T; Martin D; Brunner R; Rigler R; Lasser T
    Biosens Bioelectron; 2004 Oct; 20(3):431-5. PubMed ID: 15494221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial frequency-domain multiplexed microscopy for simultaneous, single-camera, one-shot, fluorescent, and quantitative-phase imaging.
    Chowdhury S; Eldridge WJ; Wax A; Izatt JA
    Opt Lett; 2015 Nov; 40(21):4839-42. PubMed ID: 26512463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structured illumination microscopy artefacts caused by illumination scattering.
    Mo Y; Feng F; Mao H; Fan J; Chen L
    Philos Trans A Math Phys Eng Sci; 2021 Jun; 379(2199):20200153. PubMed ID: 33896197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tunable structured illumination light sheet microscopy for background rejection and imaging depth in minimally processed tissues.
    Landry JR; Itoh R; Li JM; Hamann SS; Mandella M; Contag CH; Solgaard O
    J Biomed Opt; 2019 Apr; 24(4):1-6. PubMed ID: 30968649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens.
    Brooker G; Siegel N; Rosen J; Hashimoto N; Kurihara M; Tanabe A
    Opt Lett; 2013 Dec; 38(24):5264-7. PubMed ID: 24322233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large-field structured illumination microscopy based on 2D grating and a spatial light modulator.
    Wen K; Fang X; Ma Y; Liu M; An S; Zheng J; Kozacki T; Gao P
    Opt Lett; 2022 Jun; 47(11):2666-2669. PubMed ID: 35648900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enlarged field of view based on Schwartz modulation for light sheet fluorescence microscopy in deep tissue.
    Xu X; Chen J; Zhang B; Huang L; Zheng Y; Si K; Duan S; Gong W
    Opt Lett; 2020 Sep; 45(17):4851-4854. PubMed ID: 32870874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical volumetric projection with large NA objectives for fast high-resolution 3D imaging of neural signals.
    Meng Q; Xu T; Smith ZJ; Chu K
    Biomed Opt Express; 2020 Jul; 11(7):3769-3782. PubMed ID: 33014565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.