These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34615175)

  • 1. Spatial periodicities inside the Talbot effect: understanding, control and applications for lithography.
    Chausse P; Shields P
    Opt Express; 2021 Aug; 29(17):27628-27639. PubMed ID: 34615175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding resolution limit of displacement Talbot lithography.
    Chausse PJP; Le Boulbar ED; Lis SD; Shields PA
    Opt Express; 2019 Mar; 27(5):5918-5930. PubMed ID: 30876189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Displacement Talbot lithography: a new method for high-resolution patterning of large areas.
    Solak HH; Dais C; Clube F
    Opt Express; 2011 May; 19(11):10686-91. PubMed ID: 21643324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractional Talbot lithography with extreme ultraviolet light.
    Kim HS; Li W; Danylyuk S; Brocklesby WS; Marconi MC; Juschkin L
    Opt Lett; 2014 Dec; 39(24):6969-72. PubMed ID: 25503043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extreme ultraviolet Talbot interference lithography.
    Li W; Marconi MC
    Opt Express; 2015 Oct; 23(20):25532-8. PubMed ID: 26480070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printing sub-micron structures using Talbot mask-aligner lithography with a 193 nm CW laser light source.
    Vetter A; Kirner R; Opalevs D; Scholz M; Leisching P; Scharf T; Noell W; Rockstuhl C; Voelkel R
    Opt Express; 2018 Aug; 26(17):22218-22233. PubMed ID: 30130918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Displacement Talbot lithography for nano-engineering of III-nitride materials.
    Coulon PM; Damilano B; Alloing B; Chausse P; Walde S; Enslin J; Armstrong R; Vézian S; Hagedorn S; Wernicke T; Massies J; Zúñiga-Pérez J; Weyers M; Kneissl M; Shields PA
    Microsyst Nanoeng; 2019; 5():52. PubMed ID: 31814992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wafer-scale nanofabrication of sub-100 nm arrays by deep-UV displacement Talbot lithography.
    Gómez VJ; Graczyk M; Jam RJ; Lehmann S; Maximov I
    Nanotechnology; 2020 May; 31(29):295301. PubMed ID: 32259808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of three-dimensional high-aspect-ratio structures by oblique-incidence Talbot lithography.
    Ezaki R; Mizutani Y; Ura N; Uenohara T; Makiura Y; Takaya Y
    Opt Express; 2020 Nov; 28(24):36924-36935. PubMed ID: 33379776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Double" displacement Talbot lithography: fast, wafer-scale, direct-writing of complex periodic nanopatterns.
    Chausse P; Le Boulbar E; Coulon PM; Shields PA
    Opt Express; 2019 Oct; 27(22):32037-32046. PubMed ID: 31684423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced mask aligner lithography: fabrication of periodic patterns using pinhole array mask and Talbot effect.
    Stuerzebecher L; Harzendorf T; Vogler U; Zeitner UD; Voelkel R
    Opt Express; 2010 Sep; 18(19):19485-94. PubMed ID: 20940844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray dynamical diffraction Talbot effect behind a crystal in free space.
    Balyan M; Levonyan L; Trouni K
    Acta Crystallogr A Found Adv; 2021 Mar; 77(Pt 2):149-159. PubMed ID: 33646201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel direct writing achromatic talbot lithography: a method for large-area arbitrary sub-micron periodic nano-arrays fabrication.
    Yang S; Xue C; Zhao J; Wang L; Wu Y; Tai R
    Nanotechnology; 2019 Aug; 30(31):315301. PubMed ID: 30889553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable visibility and resolution of Nth-order Talbot imaging with pseudo-thermal light.
    Wang X; Li Z; Wen F; Wang H; Guo W; Gao N; Li Z; Mai P
    Opt Express; 2017 Jun; 25(12):13455-13464. PubMed ID: 28788890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of imperfect frequency multiplying in fractional Talbot planes and its effect on high-frequency-grating lithography.
    Thomae D; Sandfuchs O; Brunner R
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1436-44. PubMed ID: 25121429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode.
    Chen X; Yang F; Zhang C; Zhou J; Guo LJ
    ACS Nano; 2016 Apr; 10(4):4039-45. PubMed ID: 27075440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrast enhanced quarter-Talbot images.
    Rasouli S; Hebri D
    J Opt Soc Am A Opt Image Sci Vis; 2017 Dec; 34(12):2145-2156. PubMed ID: 29240088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Talbot effect of plasmonic nanolenses.
    Li L; Fu Y; Wu H; Zheng L; Zhang H; Lu Z; Sun Q; Yu W
    Opt Express; 2011 Sep; 19(20):19365-73. PubMed ID: 21996877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarized holographic lithography system for high-uniformity microscale patterning with periodic tunability.
    Xue G; Zhai Q; Lu H; Zhou Q; Ni K; Lin L; Wang X; Li X
    Microsyst Nanoeng; 2021; 7():31. PubMed ID: 34567745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the non-paraxial Talbot effect of two-dimensional periodic arrays of plasmonic gold nanodisks by differential interference contrast microscopy.
    Kim GW; Kang SH; Ha JW
    Analyst; 2020 Nov; 145(23):7541-7545. PubMed ID: 32996911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.