BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34615239)

  • 1. Dual-depth augmented reality display with reflective polarization-dependent lenses.
    Li Y; Yang Q; Xiong J; Li K; Wu ST
    Opt Express; 2021 Sep; 29(20):31478-31487. PubMed ID: 34615239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cascaded transflective liquid crystal planar lenses enable multi-plane augmented reality.
    Ye X; Fan F; Wen S
    Opt Lett; 2023 Nov; 48(22):5919-5922. PubMed ID: 37966752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-plane augmented reality display based on cholesteric liquid crystal reflective films.
    Chen Q; Peng Z; Li Y; Liu S; Zhou P; Gu J; Lu J; Yao L; Wang M; Su Y
    Opt Express; 2019 Apr; 27(9):12039-12047. PubMed ID: 31052749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accommodation-Free Head Mounted Display with Comfortable 3D Perception and an Enlarged Eye-box.
    Shrestha PK; Pryn MJ; Jia J; Chen JS; Fructuoso HN; Boev A; Zhang Q; Chu D
    Research (Wash D C); 2019; 2019():9273723. PubMed ID: 32043082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waveguide-type see-through dual focus near-eye display with a polarization grating.
    Shin KS; Choi MH; Jang J; Park JH
    Opt Express; 2021 Nov; 29(24):40294-40309. PubMed ID: 34809374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-focal waveguide see-through near-eye display with polarization-dependent lenses.
    Yoo C; Bang K; Jang C; Kim D; Lee CK; Sung G; Lee HS; Lee B
    Opt Lett; 2019 Apr; 44(8):1920-1923. PubMed ID: 30985775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.
    Shen X; Javidi B
    Appl Opt; 2018 Mar; 57(7):B184-B189. PubMed ID: 29521988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-image-source binocular waveguide display based on polarization volume gratings and lenses.
    Weng J; Li H; Wu R; Liu X
    Opt Lett; 2023 Apr; 48(8):2050-2053. PubMed ID: 37058639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Eye Vergence and Accommodation on Interactions with Content on an AR Magic-lens Display and its Surroundings.
    Lugtenberg G; Copic Pucihar K; Kljun M; Sawabe T; Fujimoto Y; Kanbara M; Kato H
    IEEE Trans Vis Comput Graph; 2024 May; PP():. PubMed ID: 38771678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tomographic waveguide-based augmented reality display.
    Zhao N; Xiao J; Weng P; Zhang H
    Opt Express; 2024 May; 32(11):18692-18699. PubMed ID: 38859019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue-free visual perception of high-density super-multiview augmented reality images.
    Lim S; Jeon H; Jung M; Lee C; Moon W; Kim K; Kim H; Hahn J
    Sci Rep; 2022 Feb; 12(1):2959. PubMed ID: 35194078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a dual focal-plane near-eye display using diffractive waveguides and multiple lenses.
    Shi X; Xue Z; Ma S; Wang B; Liu Y; Wang Y; Song W
    Appl Opt; 2022 Jul; 61(20):5844-5849. PubMed ID: 36255821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Planar Alvarez tunable lens based on polymetric liquid crystal Pancharatnam-Berry optical elements.
    Chen S; Lin J; He Z; Li Y; Su Y; Wu ST
    Opt Express; 2022 Sep; 30(19):34655-34664. PubMed ID: 36242473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D integral imaging optical see-through head-mounted display.
    Hua H; Javidi B
    Opt Express; 2014 Jun; 22(11):13484-91. PubMed ID: 24921542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of viewing distance and age on the performance and symptoms in a visual search task in augmented reality.
    Huang YY; Menozzi M
    Appl Ergon; 2022 Jul; 102():103746. PubMed ID: 35290897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid holographic Maxwellian near-eye display based on spherical wave and plane wave reconstruction for augmented reality display.
    Wang Z; Zhang X; Lv G; Feng Q; Ming H; Wang A
    Opt Express; 2021 Feb; 29(4):4927-4935. PubMed ID: 33726038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorful multi-plane augmented reality display with dynamically tunable reflective Pancharatnam-Berry phase lens.
    Yan X; Zhu J; Liu M; Liu Y; Luo D
    Opt Express; 2024 Mar; 32(6):9161-9170. PubMed ID: 38571155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses.
    Zhan T; Lee YH; Wu ST
    Opt Express; 2018 Feb; 26(4):4863-4872. PubMed ID: 29475331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength-multiplexed multi-focal-plane seethrough near-eye displays.
    Zhan T; Zou J; Lu M; Chen E; Wu ST
    Opt Express; 2019 Sep; 27(20):27507-27513. PubMed ID: 31684516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a Switchable AR/VR Near-eye Display with Accommodation-Vergence and Eyeglass Prescription Support.
    Xia X; Guan Y; State A; Chakravarthula P; Rathinavel K; Cham TJ; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3114-3124. PubMed ID: 31403422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.