These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34615302)

  • 1. 3D calibration of microsphere position in optical tweezers using the back-focal-plane interferometry method.
    Li W; Zhang H; Hu M; Zhu Q; Su H; Li N; Hu H
    Opt Express; 2021 Sep; 29(20):32271-32284. PubMed ID: 34615302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized back-focal-plane interferometry directly measures forces of optically trapped particles.
    Farré A; Marsà F; Montes-Usategui M
    Opt Express; 2012 May; 20(11):12270-91. PubMed ID: 22714216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and calibrating nonlinearity and crosstalk in back focal plane interferometry for three-dimensional position detection.
    Cheng P; Jhiang SM; Menq CH
    Opt Lett; 2017 Oct; 42(19):3948-3951. PubMed ID: 28957168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers.
    Sarshar M; Wong WT; Anvari B
    J Biomed Opt; 2014; 19(11):115001. PubMed ID: 25375348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous calibration of optical tweezers spring constant and position detector response.
    Le Gall A; Perronet K; Dulin D; Villing A; Bouyer P; Visscher K; Westbrook N
    Opt Express; 2010 Dec; 18(25):26469-74. PubMed ID: 21164997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring the complete force field of an optical trap.
    Jahnel M; Behrndt M; Jannasch A; Schäffer E; Grill SW
    Opt Lett; 2011 Apr; 36(7):1260-2. PubMed ID: 21479051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interference and crosstalk in double optical tweezers using a single laser source.
    Mangeol P; Bockelmann U
    Rev Sci Instrum; 2008 Aug; 79(8):083103. PubMed ID: 19044332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microsphere-coupled optical tweezers.
    Khosravi MH; Shahabadi V; Hajizadeh F
    Opt Lett; 2021 Sep; 46(17):4124-4127. PubMed ID: 34469955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5D-Tracking of a nanorod in a focused laser beam--a theoretical concept.
    Griesshammer M; Rohrbach A
    Opt Express; 2014 Mar; 22(5):6114-32. PubMed ID: 24663946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to calibrate an object-adapted optical trap for force sensing and interferometric shape tracking of asymmetric structures.
    Koch M; Rohrbach A
    Opt Express; 2014 Oct; 22(21):25242-57. PubMed ID: 25401558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single aerosol trapping with an annular beam: improved particle localisation.
    Dear RD; Burnham DR; Summers MD; McGloin D; Ritchie GA
    Phys Chem Chem Phys; 2012 Dec; 14(45):15826-31. PubMed ID: 23089984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interference model for back-focal-plane displacement detection in optical tweezers.
    Gittes F; Schmidt CF
    Opt Lett; 1998 Jan; 23(1):7-9. PubMed ID: 18084394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Holographic optical tweezers combined with back-focal-plane displacement detection.
    Marsà F; Farré A; Martín-Badosa E; Montes-Usategui M
    Opt Express; 2013 Dec; 21(25):30282-94. PubMed ID: 24514607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time in situ calibration of an optically trapped probing system.
    Wan J; Huang Y; Jhiang S; Menq CH
    Appl Opt; 2009 Sep; 48(25):4832-41. PubMed ID: 19724324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibration of force detection for arbitrarily shaped particles in optical tweezers.
    Bui AAM; Kashchuk AV; Balanant MA; Nieminen TA; Rubinsztein-Dunlop H; Stilgoe AB
    Sci Rep; 2018 Jul; 8(1):10798. PubMed ID: 30018378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moiré deflectometry-based position detection for optical tweezers.
    Khorshad AA; Reihani SNS; Tavassoly MT
    Opt Lett; 2017 Sep; 42(17):3506-3509. PubMed ID: 28957074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trapping of a micro-bubble by non-paraxial Gaussian beam: computation using the FDTD method.
    Sung SY; Lee YG
    Opt Express; 2008 Mar; 16(5):3463-73. PubMed ID: 18542438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved axial position detection in optical tweezers measurements.
    Dreyer JK; Berg-Sørensen K; Oddershede L
    Appl Opt; 2004 Apr; 43(10):1991-5. PubMed ID: 15074403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Multimode-Single Mode Polymer Fiber Tweezers for Single Cell Trapping and Identification with Improved Performance.
    Rodrigues SM; Paiva JS; Ribeiro RSR; Soppera O; Cunha JPS; Jorge PAS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30134569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.