BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 34615475)

  • 21. Tbx1 genetically interacts with the transforming growth factor-β/bone morphogenetic protein inhibitor Smad7 during great vessel remodeling.
    Papangeli I; Scambler PJ
    Circ Res; 2013 Jan; 112(1):90-102. PubMed ID: 23011393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genes affecting tooth morphogenesis.
    Kapadia H; Mues G; D'Souza R
    Orthod Craniofac Res; 2007 Aug; 10(3):105-13. PubMed ID: 17651126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inactivation of Cdc42 in neural crest cells causes craniofacial and cardiovascular morphogenesis defects.
    Liu Y; Jin Y; Li J; Seto E; Kuo E; Yu W; Schwartz RJ; Blazo M; Zhang SL; Peng X
    Dev Biol; 2013 Nov; 383(2):239-52. PubMed ID: 24056078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hoxa3 regulates the proliferation and differentiation of the third pharyngeal arch mesenchyme in mice.
    Chisaka O; Kameda Y
    Cell Tissue Res; 2005 Apr; 320(1):77-89. PubMed ID: 15714286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endothelin regulates neural crest deployment and fate to form great vessels through Dlx5/Dlx6-independent mechanisms.
    Kim KS; Arima Y; Kitazawa T; Nishiyama K; Asai R; Uchijima Y; Sato T; Levi G; Kitanaka S; Igarashi T; Kurihara Y; Kurihara H
    Mech Dev; 2013; 130(11-12):553-66. PubMed ID: 23933587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide screening for deubiquitinase subfamily identifies ubiquitin-specific protease 49 as a novel regulator of odontogenesis.
    Kaushal K; Kim EJ; Tyagi A; Karapurkar JK; Haq S; Jung HS; Kim KS; Ramakrishna S
    Cell Death Differ; 2022 Sep; 29(9):1689-1704. PubMed ID: 35273362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Early Embryonic Expression of
    Johnson AL; Schneider JE; Mohun TJ; Williams T; Bhattacharya S; Henderson DJ; Phillips HM; Bamforth SD
    J Cardiovasc Dev Dis; 2020 Jul; 7(3):. PubMed ID: 32717817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system.
    Niederreither K; Vermot J; Le Roux I; Schuhbaur B; Chambon P; Dollé P
    Development; 2003 Jun; 130(11):2525-34. PubMed ID: 12702665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Galphaq and Galpha11 proteins mediate endothelin-1 signaling in neural crest-derived pharyngeal arch mesenchyme.
    Ivey K; Tyson B; Ukidwe P; McFadden DG; Levi G; Olson EN; Srivastava D; Wilkie TM
    Dev Biol; 2003 Mar; 255(2):230-7. PubMed ID: 12648486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fibronectin signals through integrin α5β1 to regulate cardiovascular development in a cell type-specific manner.
    Chen D; Wang X; Liang D; Gordon J; Mittal A; Manley N; Degenhardt K; Astrof S
    Dev Biol; 2015 Nov; 407(2):195-210. PubMed ID: 26434918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ablation of specific expression domains reveals discrete functions of ectoderm- and endoderm-derived FGF8 during cardiovascular and pharyngeal development.
    Macatee TL; Hammond BP; Arenkiel BR; Francis L; Frank DU; Moon AM
    Development; 2003 Dec; 130(25):6361-74. PubMed ID: 14623825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histone deacetylase 3 regulates smooth muscle differentiation in neural crest cells and development of the cardiac outflow tract.
    Singh N; Trivedi CM; Lu M; Mullican SE; Lazar MA; Epstein JA
    Circ Res; 2011 Nov; 109(11):1240-9. PubMed ID: 21959220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PAX Genes in Cardiovascular Development.
    Steele RE; Sanders R; Phillips HM; Bamforth SD
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of Endothelin-1/Endothelin-A receptor-mediated signaling pathway in the aortic arch patterning in mice.
    Yanagisawa H; Hammer RE; Richardson JA; Williams SC; Clouthier DE; Yanagisawa M
    J Clin Invest; 1998 Jul; 102(1):22-33. PubMed ID: 9649553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathogenic mechanisms of tooth agenesis linked to paired domain mutations in human PAX9.
    Wang Y; Groppe JC; Wu J; Ogawa T; Mues G; D'Souza RN; Kapadia H
    Hum Mol Genet; 2009 Aug; 18(15):2863-74. PubMed ID: 19429910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fgfr1 regulates patterning of the pharyngeal region.
    Trokovic N; Trokovic R; Mai P; Partanen J
    Genes Dev; 2003 Jan; 17(1):141-53. PubMed ID: 12514106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genes affecting tooth morphogenesis.
    Kapadia H; Mues G; D'Souza R
    Orthod Craniofac Res; 2007 Nov; 10(4):237-44. PubMed ID: 17973693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid.
    Xu PX; Zheng W; Laclef C; Maire P; Maas RL; Peters H; Xu X
    Development; 2002 Jul; 129(13):3033-44. PubMed ID: 12070080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Msx1 mutations: how do they cause tooth agenesis?
    Wang Y; Kong H; Mues G; D'Souza R
    J Dent Res; 2011 Mar; 90(3):311-6. PubMed ID: 21297014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice.
    Clouthier DE; Hosoda K; Richardson JA; Williams SC; Yanagisawa H; Kuwaki T; Kumada M; Hammer RE; Yanagisawa M
    Development; 1998 Mar; 125(5):813-24. PubMed ID: 9449664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.