BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34615907)

  • 1. Generation of knock-in lampreys by CRISPR-Cas9-mediated genome engineering.
    Suzuki DG; Wada H; Higashijima SI
    Sci Rep; 2021 Oct; 11(1):19836. PubMed ID: 34615907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering.
    Kimura Y; Hisano Y; Kawahara A; Higashijima S
    Sci Rep; 2014 Oct; 4():6545. PubMed ID: 25293390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient generation of knock-in transgenic medaka by CRISPR/Cas9-mediated genome engineering.
    Watakabe I; Hashimoto H; Kimura Y; Yokoi S; Naruse K; Higashijima SI
    Zoological Lett; 2018; 4():3. PubMed ID: 29445519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna.
    Kumagai H; Nakanishi T; Matsuura T; Kato Y; Watanabe H
    PLoS One; 2017; 12(10):e0186112. PubMed ID: 29045453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous protein tagging in medaka using a simplified CRISPR/Cas9 knock-in approach.
    Seleit A; Aulehla A; Paix A
    Elife; 2021 Dec; 10():. PubMed ID: 34870593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biallelic editing of a lamprey genome using the CRISPR/Cas9 system.
    Zu Y; Zhang X; Ren J; Dong X; Zhu Z; Jia L; Zhang Q; Li W
    Sci Rep; 2016 Mar; 6():23496. PubMed ID: 27005311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system.
    Wu M; Wei C; Lian Z; Liu R; Zhu C; Wang H; Cao J; Shen Y; Zhao F; Zhang L; Mu Z; Wang Y; Wang X; Du L; Wang C
    Sci Rep; 2016 Apr; 6():24360. PubMed ID: 27063570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-mediated mutagenesis in the sea lamprey Petromyzon marinus: a powerful tool for understanding ancestral gene functions in vertebrates.
    Square T; Romášek M; Jandzik D; Cattell MV; Klymkowsky M; Medeiros DM
    Development; 2015 Dec; 142(23):4180-7. PubMed ID: 26511928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Generation of Knock-In Zebrafish Models for Inherited Disorders Using CRISPR-Cas9 Ribonucleoprotein Complexes.
    de Vrieze E; de Bruijn SE; Reurink J; Broekman S; van de Riet V; Aben M; Kremer H; van Wijk E
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of CRISPR-Cas9 knock-in tools for free fatty acid production using the fast-growing cyanobacterial strain Synechococcus elongatus UTEX 2973.
    Racharaks R; Arnold W; Peccia J
    J Microbiol Methods; 2021 Oct; 189():106315. PubMed ID: 34454980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A piggyBac-based toolkit for inducible genome editing in mammalian cells.
    Schertzer MD; Thulson E; Braceros KCA; Lee DM; Hinkle ER; Murphy RM; Kim SO; Vitucci ECM; Calabrese JM
    RNA; 2019 Aug; 25(8):1047-1058. PubMed ID: 31101683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient genome editing in Aspergillus niger with an improved recyclable CRISPR-HDR toolbox and its application in introducing multiple copies of heterologous genes.
    Dong H; Zheng J; Yu D; Wang B; Pan L
    J Microbiol Methods; 2019 Aug; 163():105655. PubMed ID: 31226337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and application of an HSP70 promoter-inducible genome editing system in transgenic silkworm to induce resistance to Nosema bombycis.
    Dong Z; Long J; Huang L; Hu Z; Chen P; Hu N; Zheng N; Huang X; Lu C; Pan M
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9583-9592. PubMed ID: 31707443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient generation of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing.
    Kumita W; Sato K; Suzuki Y; Kurotaki Y; Harada T; Zhou Y; Kishi N; Sato K; Aiba A; Sakakibara Y; Feng G; Okano H; Sasaki E
    Sci Rep; 2019 Sep; 9(1):12719. PubMed ID: 31481684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization and Application of CRISPR/Cas9 Genome Editing in a Cosmopolitan Pest, Diamondback Moth.
    Zhang Z; Xiong L; Xie C; Shen L; Chen X; Ye M; Sun L; Yang X; Yao S; Yue Z; Liang Z; You M; You S
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and efficient generation of GFP-knocked-in Drosophila by the CRISPR-Cas9-mediated genome editing.
    Kina H; Yoshitani T; Hanyu-Nakamura K; Nakamura A
    Dev Growth Differ; 2019 May; 61(4):265-275. PubMed ID: 31037730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats.
    Zhang J; Liu J; Yang W; Cui M; Dai B; Dong Y; Yang J; Zhang X; Liu D; Liang H; Cang M
    Theriogenology; 2019 Jul; 132():1-11. PubMed ID: 30981084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast.
    Zhang XR; He JB; Wang YZ; Du LL
    G3 (Bethesda); 2018 May; 8(6):2067-2077. PubMed ID: 29703785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.