These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34615961)

  • 1. Facile and versatile ligand analysis method of colloidal quantum dot.
    Kim JH; Park H; Kim TG; Lee H; Jun S; Lee E; Jeon WS; Chung J; Jung IS
    Sci Rep; 2021 Oct; 11(1):19889. PubMed ID: 34615961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of all-inorganic CdSe quantum dot thin films for optoelectronic applications.
    Zhang YQ; Cao XA
    Nanotechnology; 2012 Jul; 23(27):275702. PubMed ID: 22705470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification.
    Kroupa DM; Vörös M; Brawand NP; McNichols BW; Miller EM; Gu J; Nozik AJ; Sellinger A; Galli G; Beard MC
    Nat Commun; 2017 May; 8():15257. PubMed ID: 28508866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the structures of organic semiconductor-quantum dot nanocomposites through ligand shell chemistry.
    Toolan DTW; Weir MP; Kilbride RC; Willmott JR; King SM; Xiao J; Greenham NC; Friend RH; Rao A; Jones RAL; Ryan AJ
    Soft Matter; 2020 Sep; 16(34):7970-7981. PubMed ID: 32766663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic surface chemistry of colloidal metal chalcogenide quantum dots.
    Grisorio R; Quarta D; Fiore A; Carbone L; Suranna GP; Giansante C
    Nanoscale Adv; 2019 Sep; 1(9):3639-3646. PubMed ID: 36133571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Darker-than-black" PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands.
    Giansante C; Infante I; Fabiano E; Grisorio R; Suranna GP; Gigli G
    J Am Chem Soc; 2015 Feb; 137(5):1875-86. PubMed ID: 25574692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halide-, Hybrid-, and Perovskite-Functionalized Light Absorbing Quantum Materials of p-i-n Heterojunction Solar Cells.
    Beygi H; Sajjadi SA; Babakhani A; Young JF; van Veggel FCJM
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30283-30295. PubMed ID: 30107115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple cubic self-assembly of PbS quantum dots by finely controlled ligand removal through gel permeation chromatography.
    Liu J; Enomoto K; Takeda K; Inoue D; Pu YJ
    Chem Sci; 2021 Aug; 12(30):10354-10361. PubMed ID: 34377421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells.
    Ren Z; Yu J; Pan Z; Wang J; Zhong X
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18936-18944. PubMed ID: 28508629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-Directed Self-Assembly of Organic-Semiconductor/Quantum-Dot Blend Films Enables Efficient Triplet Exciton-Photon Conversion.
    Gray V; Toolan DTW; Dowland S; Allardice JR; Weir MP; Zhang Z; Xiao J; Klimash A; Winkel JF; Holland EK; Fregoso GM; Anthony JE; Bronstein H; Friend R; Ryan AJ; Jones RAL; Greenham NC; Rao A
    J Am Chem Soc; 2024 Mar; 146(11):7763-7770. PubMed ID: 38456418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-Crosslinking Strategy for Efficient Quantum Dot Light-Emitting Diodes via Thiol-Ene Click Chemistry.
    Shin S; Kang K; Jang H; Gwak N; Kim S; Kim TA; Oh N
    Small Methods; 2023 Sep; 7(9):e2300206. PubMed ID: 37160696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Direct Solvent-Quantum Dot Interaction on the Optical Properties of Colloidal Monolayer WS
    Jin H; Baek B; Kim D; Wu F; Batteas JD; Cheon J; Son DH
    Nano Lett; 2017 Dec; 17(12):7471-7477. PubMed ID: 29076338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand Locking on Quantum Dot Surfaces via a Mild Reactive Surface Treatment.
    Loiudice A; Segura Lecina O; Bornet A; Luther JM; Buonsanti R
    J Am Chem Soc; 2021 Aug; 143(33):13418-13427. PubMed ID: 34375098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Interface Characteristics and Physisorption Mechanism in Quantum Dots/TiO
    Chon B; Lee HJ; Kang Y; Kim HW; Kim CH; Son HJ
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9414-9427. PubMed ID: 38334708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand Exchange of Quantum Dots: A Thermodynamic Perspective.
    Liu M; Tang G; Liu Y; Jiang FL
    J Phys Chem Lett; 2024 Feb; 15(7):1975-1984. PubMed ID: 38346356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dithiocarbamates as capping ligands for water-soluble quantum dots.
    Zhang Y; Schnoes AM; Clapp AR
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3384-95. PubMed ID: 21053924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Processes within Quantum Dot-Molecule Complexes.
    Harris RD; Bettis Homan S; Kodaimati M; He C; Nepomnyashchii AB; Swenson NK; Lian S; Calzada R; Weiss EA
    Chem Rev; 2016 Nov; 116(21):12865-12919. PubMed ID: 27499491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Emitting Diodes Based on Colloidal Silicon Quantum Dots with Octyl and Phenylpropyl Ligands.
    Liu X; Zhao S; Gu W; Zhang Y; Qiao X; Ni Z; Pi X; Yang D
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5959-5966. PubMed ID: 29345903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overview of stabilizing ligands for biocompatible quantum dot nanocrystals.
    Zhang Y; Clapp A
    Sensors (Basel); 2011; 11(12):11036-55. PubMed ID: 22247651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.