These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 34616098)

  • 1. Publisher Correction: Accelerated RNA detection using tandem CRISPR nucleases.
    Liu TY; Knott GJ; Smock DCJ; Desmarais JJ; Son S; Bhuiya A; Jakhanwal S; Prywes N; Agrawal S; Díaz de León Derby M; Switz NA; Armstrong M; Harris AR; Charles EJ; Thornton BW; Fozouni P; Shu J; Stephens SI; Kumar GR; Zhao C; Mok A; Iavarone AT; Escajeda AM; McIntosh R; Kim S; Dugan EJ; ; Pollard KS; Tan MX; Ott M; Fletcher DA; Lareau LF; Hsu PD; Savage DF; Doudna JA
    Nat Chem Biol; 2021 Nov; 17(11):1210. PubMed ID: 34616098
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparison of Zinc Finger Nucleases Versus CRISPR-Specific Nucleases for Genome Editing of the Wiskott-Aldrich Syndrome Locus.
    Gutierrez-Guerrero A; Sanchez-Hernandez S; Galvani G; Pinedo-Gomez J; Martin-Guerra R; Sanchez-Gilabert A; Aguilar-González A; Cobo M; Gregory P; Holmes M; Benabdellah K; Martin F
    Hum Gene Ther; 2018 Mar; 29(3):366-380. PubMed ID: 28922955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome Editing in Human Cells Using CRISPR/Cas Nucleases.
    Wyvekens N; Tsai SQ; Joung JK
    Curr Protoc Mol Biol; 2015 Oct; 112():31.3.1-31.3.18. PubMed ID: 26423589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN.
    Ul Ain Q; Chung JY; Kim YH
    J Control Release; 2015 May; 205():120-7. PubMed ID: 25553825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Publisher Correction: A CRISPR-Cas9-based reporter system for single-cell detection of extracellular vesicle-mediated functional transfer of RNA.
    de Jong OG; Murphy DE; Mäger I; Willms E; Garcia-Guerra A; Gitz-Francois JJ; Lefferts J; Gupta D; Steenbeek SC; van Rheenen J; El Andaloussi S; Schiffelers RM; Wood MJA; Vader P
    Nat Commun; 2020 Mar; 11(1):1701. PubMed ID: 32235893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta.
    Johnson RA; Gurevich V; Filler S; Samach A; Levy AA
    Plant Mol Biol; 2015 Jan; 87(1-2):143-56. PubMed ID: 25403732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases.
    Zischewski J; Fischer R; Bortesi L
    Biotechnol Adv; 2017; 35(1):95-104. PubMed ID: 28011075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome engineering and disease modeling
    Eksi YE; Sanlioglu AD; Akkaya B; Ozturk BE; Sanlioglu S
    World J Stem Cells; 2021 Jun; 13(6):485-502. PubMed ID: 34249224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of Alternative Nucleases in the Age of CRISPR/Cas9.
    Guha TK; Edgell DR
    Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29186020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Editing in Clinical Practice: Where are We?
    Mittal RD
    Indian J Clin Biochem; 2019 Jan; 34(1):19-25. PubMed ID: 30728669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basics of genome editing technology and its application in livestock species.
    Petersen B
    Reprod Domest Anim; 2017 Aug; 52 Suppl 3():4-13. PubMed ID: 28815851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correction: A universal method for sensitive and cell-free detection of CRISPR-associated nucleases.
    Cox KJ; Subramanian HKK; Samaniego CC; Franco E; Choudhary A
    Chem Sci; 2020 Sep; 11(37):10287. PubMed ID: 34094293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origins of Programmable Nucleases for Genome Engineering.
    Chandrasegaran S; Carroll D
    J Mol Biol; 2016 Feb; 428(5 Pt B):963-89. PubMed ID: 26506267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops.
    Karkute SG; Singh AK; Gupta OP; Singh PM; Singh B
    Front Plant Sci; 2017; 8():1635. PubMed ID: 28970844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular determinants for CRISPR RNA maturation in the Cas10-Csm complex and roles for non-Cas nucleases.
    Walker FC; Chou-Zheng L; Dunkle JA; Hatoum-Aslan A
    Nucleic Acids Res; 2017 Feb; 45(4):2112-2123. PubMed ID: 28204542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures and mechanisms of CRISPR RNA-guided effector nucleases.
    Nishimasu H; Nureki O
    Curr Opin Struct Biol; 2017 Apr; 43():68-78. PubMed ID: 27912110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Editing in Stem Cells for Disease Therapeutics.
    Song M; Ramakrishna S
    Mol Biotechnol; 2018 Apr; 60(4):329-338. PubMed ID: 29516417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Advances in CRISPR/Cas9-mediated gene editing].
    Li C; Cao W
    Sheng Wu Gong Cheng Xue Bao; 2015 Nov; 31(11):1531-42. PubMed ID: 26939437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designed nucleases for targeted genome editing.
    Lee J; Chung JH; Kim HM; Kim DW; Kim H
    Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage.
    Karvelis T; Bigelyte G; Young JK; Hou Z; Zedaveinyte R; Budre K; Paulraj S; Djukanovic V; Gasior S; Silanskas A; Venclovas Č; Siksnys V
    Nucleic Acids Res; 2020 May; 48(9):5016-5023. PubMed ID: 32246713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.