BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34616633)

  • 1. Struo2: efficient metagenome profiling database construction for ever-expanding microbial genome datasets.
    Youngblut ND; Ley RE
    PeerJ; 2021; 9():e12198. PubMed ID: 34616633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Struo: a pipeline for building custom databases for common metagenome profilers.
    de la Cuesta-Zuluaga J; Ley RE; Youngblut ND
    Bioinformatics; 2020 Apr; 36(7):2314-2315. PubMed ID: 31778148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in-depth evaluation of metagenomic classifiers for soil microbiomes.
    Edwin NR; Fitzpatrick AH; Brennan F; Abram F; O'Sullivan O
    Environ Microbiome; 2024 Mar; 19(1):19. PubMed ID: 38549112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-Scale Metagenome Assembly Reveals Novel Animal-Associated Microbial Genomes, Biosynthetic Gene Clusters, and Other Genetic Diversity.
    Youngblut ND; de la Cuesta-Zuluaga J; Reischer GH; Dauser S; Schuster N; Walzer C; Stalder G; Farnleitner AH; Ley RE
    mSystems; 2020 Nov; 5(6):. PubMed ID: 33144315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data.
    Yang C; Chowdhury D; Zhang Z; Cheung WK; Lu A; Bian Z; Zhang L
    Comput Struct Biotechnol J; 2021; 19():6301-6314. PubMed ID: 34900140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the impact of database choice on the accuracy of metagenomic read classification for the rumen microbiome.
    Smith RH; Glendinning L; Walker AW; Watson M
    Anim Microbiome; 2022 Nov; 4(1):57. PubMed ID: 36401288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPIRE: a Searchable, Planetary-scale mIcrobiome REsource.
    Schmidt TSB; Fullam A; Ferretti P; Orakov A; Maistrenko OM; Ruscheweyh HJ; Letunic I; Duan Y; Van Rossum T; Sunagawa S; Mende DR; Finn RD; Kuhn M; Pedro Coelho L; Bork P
    Nucleic Acids Res; 2024 Jan; 52(D1):D777-D783. PubMed ID: 37897342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of metagenomic data from the
    Foo A; Cerdeira L; Hughes GL; Heinz E
    Wellcome Open Res; 2023; 8():131. PubMed ID: 37577055
    [No Abstract]   [Full Text] [Related]  

  • 9. The Reliability of Metagenome-Assembled Genomes (MAGs) in Representing Natural Populations: Insights from Comparing MAGs against Isolate Genomes Derived from the Same Fecal Sample.
    Meziti A; Rodriguez-R LM; Hatt JK; Peña-Gonzalez A; Levy K; Konstantinidis KT
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HumGut: a comprehensive human gut prokaryotic genomes collection filtered by metagenome data.
    Hiseni P; Rudi K; Wilson RC; Hegge FT; Snipen L
    Microbiome; 2021 Jul; 9(1):165. PubMed ID: 34330336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ReprDB and panDB: minimalist databases with maximal microbial representation.
    Zhou W; Gay N; Oh J
    Microbiome; 2018 Jan; 6(1):15. PubMed ID: 29347966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-read metagenomics retrieves complete single-contig bacterial genomes from canine feces.
    Cuscó A; Pérez D; Viñes J; Fàbregas N; Francino O
    BMC Genomics; 2021 May; 22(1):330. PubMed ID: 33957869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery.
    Stewart RD; Auffret MD; Warr A; Walker AW; Roehe R; Watson M
    Nat Biotechnol; 2019 Aug; 37(8):953-961. PubMed ID: 31375809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing and evaluating the reconstruction of Metagenome-assembled microbial genomes.
    Papudeshi B; Haggerty JM; Doane M; Morris MM; Walsh K; Beattie DT; Pande D; Zaeri P; Silva GGZ; Thompson F; Edwards RA; Dinsdale EA
    BMC Genomics; 2017 Nov; 18(1):915. PubMed ID: 29183281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Characterization of Understudied Human Microbiomes Using Targeted Phylogenetics.
    Rosa BA; Mihindukulasuriya K; Hallsworth-Pepin K; Wollam A; Martin J; Snowden C; Dunne WM; Weinstock GM; Burnham CA; Mitreva M
    mSystems; 2020 Feb; 5(1):. PubMed ID: 32098835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. phyloFlash: Rapid Small-Subunit rRNA Profiling and Targeted Assembly from Metagenomes.
    Gruber-Vodicka HR; Seah BKB; Pruesse E
    mSystems; 2020 Oct; 5(5):. PubMed ID: 33109753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using high-abundance proteins as guides for fast and effective peptide/protein identification from human gut metaproteomic data.
    Stamboulian M; Li S; Ye Y
    Microbiome; 2021 Apr; 9(1):80. PubMed ID: 33795009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis.
    Dubinkina VB; Ischenko DS; Ulyantsev VI; Tyakht AV; Alexeev DG
    BMC Bioinformatics; 2016 Jan; 17():38. PubMed ID: 26774270
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.