These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 34616647)

  • 21. Nano-biocatalysts for food applications; immobilized enzymes within different nanostructures.
    Mohammadi ZB; Zhang F; Kharazmi MS; Jafari SM
    Crit Rev Food Sci Nutr; 2023; 63(32):11351-11369. PubMed ID: 35758266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chloro-Modified Magnetic Fe
    Ulu A; Noma SAA; Koytepe S; Ates B
    Appl Biochem Biotechnol; 2019 Mar; 187(3):938-956. PubMed ID: 30101367
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and characterization of a novel l-asparaginase/MWCNT nanobioconjugate.
    Cristóvão RO; Almeida MR; Barros MA; Nunes JCF; Boaventura RAR; Loureiro JM; Faria JL; Neves MC; Freire MG; Ebinuma-Santos VC; Tavares APM; Silva CG
    RSC Adv; 2020 Aug; 10(52):31205-31213. PubMed ID: 35520670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanotechnology and enzyme immobilization: a review.
    Oke MA; Ojo SA; Fasiku SA; Adebayo EA
    Nanotechnology; 2023 Jul; 34(38):. PubMed ID: 37257425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nano-organic supports for enzyme immobilization: Scopes and perspectives.
    Zahirinejad S; Hemmati R; Homaei A; Dinari A; Hosseinkhani S; Mohammadi S; Vianello F
    Colloids Surf B Biointerfaces; 2021 Aug; 204():111774. PubMed ID: 33932893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent trends using natural polymeric nanofibers as supports for enzyme immobilization and catalysis.
    Khan RS; Rather AH; Wani TU; Rather SU; Amna T; Hassan MS; Sheikh FA
    Biotechnol Bioeng; 2023 Jan; 120(1):22-40. PubMed ID: 36169115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial L-asparaginase for Application in Acrylamide Mitigation from Food: Current Research Status and Future Perspectives.
    Jia R; Wan X; Geng X; Xue D; Xie Z; Chen C
    Microorganisms; 2021 Aug; 9(8):. PubMed ID: 34442737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biopolymers and nanostructured materials to develop pectinases-based immobilized nano-biocatalytic systems for biotechnological applications.
    Zhang S; Bilal M; Zdarta J; Cui J; Kumar A; Franco M; Ferreira LFR; Iqbal HMN
    Food Res Int; 2021 Feb; 140():109979. PubMed ID: 33648214
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Abd El-Baky HH; El-Baroty GS
    Recent Pat Biotechnol; 2020; 14(2):154-163. PubMed ID: 31724520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbonic Anhydrase Carrying Electrospun Nanofibers for Biocatalysis Applications.
    Ünlüer ÖB; Ecevit K; Diltemiz SE
    Protein Pept Lett; 2021; 28(5):520-532. PubMed ID: 33143606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [L-asparaginases of extremophilic microorganisms in biomedicine].
    Dumina MV; Eldarov MA; Zdanov DD; Sokolov NN
    Biomed Khim; 2020 Feb; 66(2):105-123. PubMed ID: 32420891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Chemistry and Applications of Metal-Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems.
    Silva ARM; Alexandre JYNH; Souza JES; Neto JGL; de Sousa Júnior PG; Rocha MVP; Dos Santos JCS
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Enzyme Reuse through the Bioconjugation of L-Asparaginase and Silica-Based Supported Ionic Liquid-like Phase Materials.
    Nunes JCF; Almeida MR; Bento RMF; Pereira MM; Santos-Ebinuma VC; Neves MC; Freire MG; Tavares APM
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immobilization of enzymes on nanoinorganic support materials: An update.
    Ashkan Z; Hemmati R; Homaei A; Dinari A; Jamlidoost M; Tashakor A
    Int J Biol Macromol; 2021 Jan; 168():708-721. PubMed ID: 33232698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Advances in capillary-based immobilized enzyme microreactor based on DNA-directed immobilization].
    Song J; Li M; Shen H; Zhou Z; He W; Su P; Yang Y
    Se Pu; 2020 Oct; 38(10):1206-1210. PubMed ID: 34213117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanobiocatalyst advancements and bioprocessing applications.
    Misson M; Zhang H; Jin B
    J R Soc Interface; 2015 Jan; 12(102):20140891. PubMed ID: 25392397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies.
    Aggarwal S; Chakravarty A; Ikram S
    Int J Biol Macromol; 2021 Jan; 167():962-986. PubMed ID: 33186644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immobilization of Enzymes in Protein Films.
    Sánchez-deAlcázar D; Liutkus M; Cortajarena AL
    Methods Mol Biol; 2020; 2100():211-226. PubMed ID: 31939126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanocarriers-based immobilization of enzymes for industrial application.
    Thakur K; Attri C; Seth A
    3 Biotech; 2021 Oct; 11(10):427. PubMed ID: 34603907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzyme Immobilization on Functionalized Graphene Oxide Nanosheets: Efficient and Robust Biocatalysts.
    Soozanipour A; Taheri-Kafrani A
    Methods Enzymol; 2018; 609():371-403. PubMed ID: 30244798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.