These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 34616647)

  • 41. Nanostructured supports for multienzyme co-immobilization for biotechnological applications: Achievements, challenges and prospects.
    Zdarta J; Kołodziejczak-Radzimska A; Bachosz K; Rybarczyk A; Bilal M; Iqbal HMN; Buszewski B; Jesionowski T
    Adv Colloid Interface Sci; 2023 May; 315():102889. PubMed ID: 37030261
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: A robust nanobiocatalyst.
    Defaei M; Taheri-Kafrani A; Miroliaei M; Yaghmaei P
    Int J Biol Macromol; 2018 Jul; 113():354-360. PubMed ID: 29486263
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural and biochemical properties of L-asparaginase.
    Lubkowski J; Wlodawer A
    FEBS J; 2021 Jul; 288(14):4183-4209. PubMed ID: 34060231
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Armoring bio-catalysis via structural and functional coordination between nanostructured materials and lipases for tailored applications.
    Bilal M; Iqbal HMN
    Int J Biol Macromol; 2021 Jan; 166():818-838. PubMed ID: 33144258
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sources, purification, immobilization and industrial applications of microbial lipases: An overview.
    Enespa ; Chandra P; Singh DP
    Crit Rev Food Sci Nutr; 2023; 63(24):6653-6686. PubMed ID: 35179093
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Magnetic Fe
    Ulu A; Noma SAA; Koytepe S; Ates B
    Artif Cells Nanomed Biotechnol; 2018; 46(sup2):1035-1045. PubMed ID: 29873527
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Co-Immobilization and Co-Localization of Multi-Enzyme Systems on Porous Materials.
    Orrego AH; López-Gallego F; Fernandez-Lorente G; Guisan JM; Rocha-Martín J
    Methods Mol Biol; 2020; 2100():297-308. PubMed ID: 31939131
    [TBL] [Abstract][Full Text] [Related]  

  • 48. L-Asparaginase delivery systems targeted to minimize its side-effects.
    Talluri VP; Mutaliyeva B; Sharipova A; Ulaganathan V; Lanka SS; Aidarova S; Suigenbayeva A; Tleuova A
    Adv Colloid Interface Sci; 2023 Jun; 316():102915. PubMed ID: 37159987
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Immobilized enzymes in inorganic hybrid nanoflowers for biocatalytic and biosensing applications.
    Liang X; Liu Y; Wen K; Jiang W; Li Q
    J Mater Chem B; 2021 Sep; 9(37):7597-7607. PubMed ID: 34596205
    [TBL] [Abstract][Full Text] [Related]  

  • 50. State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector - current status and future trends.
    Bilal M; Iqbal HMN
    Crit Rev Food Sci Nutr; 2020; 60(12):2052-2066. PubMed ID: 31210055
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A systematic review of recent trends in research on therapeutically significant L-asparaginase and acute lymphoblastic leukemia.
    Suresh SA; Ethiraj S; Rajnish KN
    Mol Biol Rep; 2022 Dec; 49(12):11281-11287. PubMed ID: 35816224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Advances in enzyme immobilization based on hierarchical porous metal-organic frameworks].
    Chen Y; Zheng H; Cao Y; Yang J; Zhou H
    Sheng Wu Gong Cheng Xue Bao; 2023 Mar; 39(3):930-941. PubMed ID: 36994563
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Catalytic characteristics and application of l-asparaginase immobilized on aluminum oxide pellets.
    Agrawal S; Sharma I; Prajapati BP; Suryawanshi RK; Kango N
    Int J Biol Macromol; 2018 Jul; 114():504-511. PubMed ID: 29572146
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Environmentally Friendly Enzyme Immobilization on MOF Materials.
    Gascón Pérez V; Sánchez-Sánchez M
    Methods Mol Biol; 2020; 2100():271-296. PubMed ID: 31939130
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tunable Polymeric Scaffolds for Enzyme Immobilization.
    Rodriguez-Abetxuko A; Sánchez-deAlcázar D; Muñumer P; Beloqui A
    Front Bioeng Biotechnol; 2020; 8():830. PubMed ID: 32850710
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 3D-Printed Labware for High-Throughput Immobilization of Enzymes.
    Spano MB; Tran BH; Majumdar S; Weiss GA
    J Org Chem; 2020 Jul; 85(13):8480-8488. PubMed ID: 32502347
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Challenges and perspectives of the β-galactosidase enzyme.
    Damin BIS; Kovalski FC; Fischer J; Piccin JS; Dettmer A
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5281-5298. PubMed ID: 34223948
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent research progress on microbial L-asparaginases.
    Zuo S; Zhang T; Jiang B; Mu W
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1069-79. PubMed ID: 25492420
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Current applications and different approaches for microbial l-asparaginase production.
    Cachumba JJ; Antunes FA; Peres GF; Brumano LP; Santos JC; Da Silva SS
    Braz J Microbiol; 2016 Dec; 47 Suppl 1(Suppl 1):77-85. PubMed ID: 27866936
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance.
    Hernandez K; Fernandez-Lafuente R
    Enzyme Microb Technol; 2011 Feb; 48(2):107-22. PubMed ID: 22112819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.