These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34616899)

  • 1. Real-Time Gait Phase Estimation for Robotic Hip Exoskeleton Control During Multimodal Locomotion.
    Kang I; Molinaro DD; Duggal S; Chen Y; Kunapuli P; Young AJ
    IEEE Robot Autom Lett; 2021 Apr; 6(2):3491-3497. PubMed ID: 34616899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications.
    Kang I; Molinaro DD; Choi G; Camargo J; Young AJ
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3234-3242. PubMed ID: 35389859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous locomotion mode classification using a robotic hip exoskeleton.
    Kang I; Molinaro DD; Choi G; Young AJ
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2020; 2020():376-381. PubMed ID: 35499063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Real-time Phase Estimation for Normal and Asymmetric Gait.
    Shushtari M; Dinovitzer H; Weng J; Arami A
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Unified Gait Phase Estimation and Control of Exoskeleton using Virtual Energy Regulator (VER).
    Nasiri R; Dinovitzer H; Arami A
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-Robust Real-Time Estimation of Gait Phase.
    Shushtari M; Dinovitzer H; Weng J; Arami A
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2793-2801. PubMed ID: 36121941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invariant hip moment pattern while walking with a robotic hip exoskeleton.
    Lewis CL; Ferris DP
    J Biomech; 2011 Mar; 44(5):789-93. PubMed ID: 21333995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.
    Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL
    J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors.
    Shin D; Lee S; Hwang S
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological Hip Torque Estimation using a Robotic Hip Exoskeleton.
    Molinaro DD; Kang I; Camargo J; Young AJ
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2020; 2020():791-796. PubMed ID: 35499064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study.
    Sanz-Morère CB; Martini E; Meoni B; Arnetoli G; Giffone A; Doronzio S; Fanciullacci C; Parri A; Conti R; Giovacchini F; Friðriksson Þ; Romo D; Crea S; Molino-Lova R; Vitiello N
    J Neuroeng Rehabil; 2021 Jul; 18(1):111. PubMed ID: 34217307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Torque Predictions From Electromyography Across Multiple Levels of Active Exoskeleton Assistance Despite Non-linear Reorganization of Locomotor Output.
    George JA; Gunnell AJ; Archangeli D; Hunt G; Ishmael M; Foreman KB; Lenzi T
    Front Neurorobot; 2021; 15():700823. PubMed ID: 34803646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons.
    Su B; Liu YX; Gutierrez-Farewik EM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Pediatric Knee Exoskeleton With Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals With Cerebral Palsy.
    Chen J; Hochstein J; Kim C; Tucker L; Hammel LE; Damiano DL; Bulea TC
    Front Robot AI; 2021; 8():702137. PubMed ID: 34222356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validating Model-Based Prediction Of Biological Knee Moment During Walking With An Exoskeleton in Crouch Gait: Potential Application for Exoskeleton Control.
    Chen J; Damiano DL; Lerner ZF; Bulea TC
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():778-783. PubMed ID: 31374725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.
    Choi H; Seo K; Hyung S; Shim Y; Lim SC
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards the use of a lower limb exoskeleton for locomotion assistance in individuals with neuromuscular locomotor deficits.
    Murray S; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1912-5. PubMed ID: 23366288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.