These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 34617022)
1. Landmark Detection in Cardiac MRI by Using a Convolutional Neural Network. Xue H; Artico J; Fontana M; Moon JC; Davies RH; Kellman P Radiol Artif Intell; 2021 Sep; 3(5):e200197. PubMed ID: 34617022 [TBL] [Abstract][Full Text] [Related]
2. Joint Deep Learning Framework for Image Registration and Segmentation of Late Gadolinium Enhanced MRI and Cine Cardiac MRI. Upendra RR; Simon R; Linte CA Proc SPIE Int Soc Opt Eng; 2021 Feb; 11598():. PubMed ID: 34079155 [TBL] [Abstract][Full Text] [Related]
3. A Supervised Image Registration Approach for Late Gadolinium Enhanced MRI and Cine Cardiac MRI Using Convolutional Neural Networks. Upendra RR; Simon R; Linte CA Med Image Underst Anal; 2020 Jul; 1248():208-220. PubMed ID: 34278386 [TBL] [Abstract][Full Text] [Related]
4. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images. Zabihollahy F; White JA; Ukwatta E Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937 [TBL] [Abstract][Full Text] [Related]
5. Deep Learning to Classify AL versus ATTR Cardiac Amyloidosis MR Images. Germain P; Vardazaryan A; Labani A; Padoy N; Roy C; El Ghannudi S Biomedicines; 2023 Jan; 11(1):. PubMed ID: 36672702 [TBL] [Abstract][Full Text] [Related]
6. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network. Penso M; Moccia S; Scafuri S; Muscogiuri G; Pontone G; Pepi M; Caiani EG Comput Methods Programs Biomed; 2021 Jun; 204():106059. PubMed ID: 33812305 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning-based Identification of Brain MRI Sequences Using a Model Trained on Large Multicentric Study Cohorts. Mahmutoglu MA; Preetha CJ; Meredig H; Tonn JC; Weller M; Wick W; Bendszus M; Brugnara G; Vollmuth P Radiol Artif Intell; 2024 Jan; 6(1):e230095. PubMed ID: 38166331 [TBL] [Abstract][Full Text] [Related]
8. Deep learning for classification of late gadolinium enhancement lesions based on the 16-segment left ventricular model. Kim YC; Chung Y; Choe YH Phys Med; 2024 Jan; 117():103193. PubMed ID: 38056081 [TBL] [Abstract][Full Text] [Related]
9. Deep learning architecture for 3D image super-resolution of late gadolinium enhanced cardiac MRI. Upendra RR; Simon R; Linte CA J Med Imaging (Bellingham); 2023 Sep; 10(5):051808. PubMed ID: 37235130 [TBL] [Abstract][Full Text] [Related]
10. AI Cardiac MRI Scar Analysis Aids Prediction of Major Arrhythmic Events in the Multicenter DERIVATE Registry. Ghanbari F; Joyce T; Lorenzoni V; Guaricci AI; Pavon AG; Fusini L; Andreini D; Rabbat MG; Aquaro GD; Abete R; Bogaert J; Camastra G; Carigi S; Carrabba N; Casavecchia G; Censi S; Cicala G; De Cecco CN; De Lazzari M; Di Giovine G; Di Roma M; Focardi M; Gaibazzi N; Gismondi A; Gravina M; Lanzillo C; Lombardi M; Lozano-Torres J; Masi A; Moro C; Muscogiuri G; Nese A; Pradella S; Sbarbati S; Schoepf UJ; Valentini A; Crelier G; Masci PG; Pontone G; Kozerke S; Schwitter J Radiology; 2023 May; 307(3):e222239. PubMed ID: 36943075 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning Analysis of Cardiac MRI in Legacy Datasets: Multi-Ethnic Study of Atherosclerosis. Suinesiaputra A; Mauger CA; Ambale-Venkatesh B; Bluemke DA; Dam Gade J; Gilbert K; Janse MHA; Hald LS; Werkhoven C; Wu CO; Lima JAC; Young AA Front Cardiovasc Med; 2021; 8():807728. PubMed ID: 35127868 [TBL] [Abstract][Full Text] [Related]
12. Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection. Avard E; Shiri I; Hajianfar G; Abdollahi H; Kalantari KR; Houshmand G; Kasani K; Bitarafan-Rajabi A; Deevband MR; Oveisi M; Zaidi H Comput Biol Med; 2022 Feb; 141():105145. PubMed ID: 34929466 [TBL] [Abstract][Full Text] [Related]
13. Deep Learning for Diagnosis of Chronic Myocardial Infarction on Nonenhanced Cardiac Cine MRI. Zhang N; Yang G; Gao Z; Xu C; Zhang Y; Shi R; Keegan J; Xu L; Zhang H; Fan Z; Firmin D Radiology; 2019 Jun; 291(3):606-617. PubMed ID: 31038407 [TBL] [Abstract][Full Text] [Related]
14. Automated detection of left ventricle in arterial input function images for inline perfusion mapping using deep learning: A study of 15,000 patients. Xue H; Tseng E; Knott KD; Kotecha T; Brown L; Plein S; Fontana M; Moon JC; Kellman P Magn Reson Med; 2020 Nov; 84(5):2788-2800. PubMed ID: 32378776 [TBL] [Abstract][Full Text] [Related]
15. Fully Automatic initialization and segmentation of left and right ventricles for large-scale cardiac MRI using a deeply supervised network and 3D-ASM. Hu H; Pan N; Frangi AF Comput Methods Programs Biomed; 2023 Oct; 240():107679. PubMed ID: 37364366 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks. Farrag NA; Lochbihler A; White JA; Ukwatta E Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085 [TBL] [Abstract][Full Text] [Related]
17. MVnet: automated time-resolved tracking of the mitral valve plane in CMR long-axis cine images with residual neural networks: a multi-center, multi-vendor study. Gonzales RA; Seemann F; Lamy J; Mojibian H; Atar D; Erlinge D; Steding-Ehrenborg K; Arheden H; Hu C; Onofrey JA; Peters DC; Heiberg E J Cardiovasc Magn Reson; 2021 Dec; 23(1):137. PubMed ID: 34857009 [TBL] [Abstract][Full Text] [Related]