These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34617030)

  • 1. Automated Segmentation of Visceral, Deep Subcutaneous, and Superficial Subcutaneous Adipose Tissue Volumes in MRI of Neonates and Young Children.
    Kway YM; Thirumurugan K; Tint MT; Michael N; Shek LP; Yap FKP; Tan KH; Godfrey KM; Chong YS; Fortier MV; Marx UC; Eriksson JG; Lee YS; Velan SS; Feng M; Sadananthan SA
    Radiol Artif Intell; 2021 Sep; 3(5):e200304. PubMed ID: 34617030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fully convolutional neural network for comprehensive compartmentalization of abdominal adipose tissue compartments in MRI.
    Kway YM; Thirumurugan K; Michael N; Tan KH; Godfrey KM; Gluckman P; Chong YS; Venkataraman K; Khoo EYH; Khoo CM; Leow MK; Tai ES; Chan JK; Chan SY; Eriksson JG; Fortier MV; Lee YS; Velan SS; Feng M; Sadananthan SA
    Comput Biol Med; 2023 Dec; 167():107608. PubMed ID: 37897959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CAFT: a deep learning-based comprehensive abdominal fat analysis tool for large cohort studies.
    Bhanu PK; Arvind CS; Yeow LY; Chen WX; Lim WS; Tan CH
    MAGMA; 2022 Apr; 35(2):205-220. PubMed ID: 34338926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Deep Learning-Based Segmentation of Abdominal Adipose Tissue on Dixon MRI in Adolescents: A Prospective Population-Based Study.
    Wu T; Estrada S; van Gils R; Su R; Jaddoe VWV; Oei EHG; Klein S
    AJR Am J Roentgenol; 2024 Jan; 222(1):e2329570. PubMed ID: 37584508
    [No Abstract]   [Full Text] [Related]  

  • 5. Automated segmentation of visceral and subcutaneous (deep and superficial) adipose tissues in normal and overweight men.
    Sadananthan SA; Prakash B; Leow MK; Khoo CM; Chou H; Venkataraman K; Khoo EY; Lee YS; Gluckman PD; Tai ES; Velan SS
    J Magn Reson Imaging; 2015 Apr; 41(4):924-34. PubMed ID: 24803305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abdominal adipose tissue compartments vary with ethnicity in Asian neonates: Growing Up in Singapore Toward Healthy Outcomes birth cohort study.
    Tint MT; Fortier MV; Godfrey KM; Shuter B; Kapur J; Rajadurai VS; Agarwal P; Chinnadurai A; Niduvaje K; Chan YH; Aris IB; Soh SE; Yap F; Saw SM; Kramer MS; Gluckman PD; Chong YS; Lee YS
    Am J Clin Nutr; 2016 May; 103(5):1311-7. PubMed ID: 27053381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maternal glycemia during pregnancy and offspring abdominal adiposity measured by MRI in the neonatal period and preschool years: The Growing Up in Singapore Towards healthy Outcomes (GUSTO) prospective mother-offspring birth cohort study.
    Tint MT; Sadananthan SA; Soh SE; Aris IM; Michael N; Tan KH; Shek LPC; Yap F; Gluckman PD; Chong YS; Godfrey KM; Velan SS; Chan SY; Eriksson JG; Fortier MV; Zhang C; Lee YS
    Am J Clin Nutr; 2020 Jul; 112(1):39-47. PubMed ID: 32219421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully convolutional networks for automated segmentation of abdominal adipose tissue depots in multicenter water-fat MRI.
    Langner T; Hedström A; Mörwald K; Weghuber D; Forslund A; Bergsten P; Ahlström H; Kullberg J
    Magn Reson Med; 2019 Apr; 81(4):2736-2745. PubMed ID: 30311704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association between maternal mid-gestation vitamin D status and neonatal abdominal adiposity.
    Tint MT; Chong MF; Aris IM; Godfrey KM; Quah PL; Kapur J; Saw SM; Gluckman PD; Rajadurai VS; Yap F; Kramer MS; Chong YS; Henry CJ; Fortier MV; Lee YS
    Int J Obes (Lond); 2018 Jul; 42(7):1296-1305. PubMed ID: 29523876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Combined Region- and Pixel-Based Deep Learning Approach for Quantifying Abdominal Adipose Tissue in Adolescents Using Dixon Magnetic Resonance Imaging.
    Ogunleye OA; Raviprakash H; Simmons AM; Bovell RTM; Martinez PE; Yanovski JA; Berman KF; Schmidt PJ; Jones EC; Bagheri H; Biassou NM; Hsu LY
    Tomography; 2023 Jan; 9(1):139-149. PubMed ID: 36648999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully Automated and Standardized Segmentation of Adipose Tissue Compartments via Deep Learning in 3D Whole-Body MRI of Epidemiologic Cohort Studies.
    Küstner T; Hepp T; Fischer M; Schwartz M; Fritsche A; Häring HU; Nikolaou K; Bamberg F; Yang B; Schick F; Gatidis S; Machann J
    Radiol Artif Intell; 2020 Nov; 2(6):e200010. PubMed ID: 33937847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated abdominal adipose tissue segmentation and volume quantification on longitudinal MRI using 3D convolutional neural networks with multi-contrast inputs.
    Kafali SG; Shih SF; Li X; Kim GHJ; Kelly T; Chowdhury S; Loong S; Moretz J; Barnes SR; Li Z; Wu HH
    MAGMA; 2024 Jul; 37(3):491-506. PubMed ID: 38300360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic intra-subject registration-based segmentation of abdominal fat from water-fat MRI.
    Joshi AA; Hu HH; Leahy RM; Goran MI; Nayak KS
    J Magn Reson Imaging; 2013 Feb; 37(2):423-30. PubMed ID: 23011805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abdominal fat quantification using convolutional networks.
    Schneider D; Eggebrecht T; Linder A; Linder N; Schaudinn A; Blüher M; Denecke T; Busse H
    Eur Radiol; 2023 Dec; 33(12):8957-8964. PubMed ID: 37436508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic segmentation of large-scale CT image datasets for detailed body composition analysis.
    Ahmad N; Strand R; Sparresäter B; Tarai S; Lundström E; Bergström G; Ahlström H; Kullberg J
    BMC Bioinformatics; 2023 Sep; 24(1):346. PubMed ID: 37723444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FatSegNet: A fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI.
    Estrada S; Lu R; Conjeti S; Orozco-Ruiz X; Panos-Willuhn J; Breteler MMB; Reuter M
    Magn Reson Med; 2020 Apr; 83(4):1471-1483. PubMed ID: 31631409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Neural Networks for Visceral and Subcutaneous Adipose Tissue Segmentation using Volumetric Multi-Contrast MRI.
    Kafali SG; Shih SF; Li X; Chowdhury S; Loong S; Barnes S; Li Z; Wu HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3933-3937. PubMed ID: 34892092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical evaluation of automated segmentation for body composition analysis on abdominal L3 CT slices in polytrauma patients.
    Ackermans LLGC; Volmer L; Timmermans QMMA; Brecheisen R; Damink SMWO; Dekker A; Loeffen D; Poeze M; Blokhuis TJ; Wee L; Ten Bosch JA
    Injury; 2022 Nov; 53 Suppl 3():S30-S41. PubMed ID: 35680433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning for abdominal adipose tissue segmentation with few labelled samples.
    Wang Z; Hounye AH; Zhang J; Hou M; Qi M
    Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):579-587. PubMed ID: 34845590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An effective automatic segmentation of abdominal adipose tissue using a convolution neural network.
    Micomyiza C; Zou B; Li Y
    Diabetes Metab Syndr; 2022 Sep; 16(9):102589. PubMed ID: 35995029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.