These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 34617030)
1. Automated Segmentation of Visceral, Deep Subcutaneous, and Superficial Subcutaneous Adipose Tissue Volumes in MRI of Neonates and Young Children. Kway YM; Thirumurugan K; Tint MT; Michael N; Shek LP; Yap FKP; Tan KH; Godfrey KM; Chong YS; Fortier MV; Marx UC; Eriksson JG; Lee YS; Velan SS; Feng M; Sadananthan SA Radiol Artif Intell; 2021 Sep; 3(5):e200304. PubMed ID: 34617030 [TBL] [Abstract][Full Text] [Related]
2. A fully convolutional neural network for comprehensive compartmentalization of abdominal adipose tissue compartments in MRI. Kway YM; Thirumurugan K; Michael N; Tan KH; Godfrey KM; Gluckman P; Chong YS; Venkataraman K; Khoo EYH; Khoo CM; Leow MK; Tai ES; Chan JK; Chan SY; Eriksson JG; Fortier MV; Lee YS; Velan SS; Feng M; Sadananthan SA Comput Biol Med; 2023 Dec; 167():107608. PubMed ID: 37897959 [TBL] [Abstract][Full Text] [Related]
3. CAFT: a deep learning-based comprehensive abdominal fat analysis tool for large cohort studies. Bhanu PK; Arvind CS; Yeow LY; Chen WX; Lim WS; Tan CH MAGMA; 2022 Apr; 35(2):205-220. PubMed ID: 34338926 [TBL] [Abstract][Full Text] [Related]
4. Automated Deep Learning-Based Segmentation of Abdominal Adipose Tissue on Dixon MRI in Adolescents: A Prospective Population-Based Study. Wu T; Estrada S; van Gils R; Su R; Jaddoe VWV; Oei EHG; Klein S AJR Am J Roentgenol; 2024 Jan; 222(1):e2329570. PubMed ID: 37584508 [No Abstract] [Full Text] [Related]
5. Automated segmentation of visceral and subcutaneous (deep and superficial) adipose tissues in normal and overweight men. Sadananthan SA; Prakash B; Leow MK; Khoo CM; Chou H; Venkataraman K; Khoo EY; Lee YS; Gluckman PD; Tai ES; Velan SS J Magn Reson Imaging; 2015 Apr; 41(4):924-34. PubMed ID: 24803305 [TBL] [Abstract][Full Text] [Related]
16. FatSegNet: A fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI. Estrada S; Lu R; Conjeti S; Orozco-Ruiz X; Panos-Willuhn J; Breteler MMB; Reuter M Magn Reson Med; 2020 Apr; 83(4):1471-1483. PubMed ID: 31631409 [TBL] [Abstract][Full Text] [Related]
17. 3D Neural Networks for Visceral and Subcutaneous Adipose Tissue Segmentation using Volumetric Multi-Contrast MRI. Kafali SG; Shih SF; Li X; Chowdhury S; Loong S; Barnes S; Li Z; Wu HH Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3933-3937. PubMed ID: 34892092 [TBL] [Abstract][Full Text] [Related]
18. Clinical evaluation of automated segmentation for body composition analysis on abdominal L3 CT slices in polytrauma patients. Ackermans LLGC; Volmer L; Timmermans QMMA; Brecheisen R; Damink SMWO; Dekker A; Loeffen D; Poeze M; Blokhuis TJ; Wee L; Ten Bosch JA Injury; 2022 Nov; 53 Suppl 3():S30-S41. PubMed ID: 35680433 [TBL] [Abstract][Full Text] [Related]
19. Deep learning for abdominal adipose tissue segmentation with few labelled samples. Wang Z; Hounye AH; Zhang J; Hou M; Qi M Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):579-587. PubMed ID: 34845590 [TBL] [Abstract][Full Text] [Related]
20. An effective automatic segmentation of abdominal adipose tissue using a convolution neural network. Micomyiza C; Zou B; Li Y Diabetes Metab Syndr; 2022 Sep; 16(9):102589. PubMed ID: 35995029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]