These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34617338)

  • 1. Engineering Polysaccharide-Based Hydrogel Photonic Constructs: From Multiscale Detection to the Biofabrication of Living Optical Fibers.
    Guimarães CF; Ahmed R; Mataji-Kojouri A; Soto F; Wang J; Liu S; Stoyanova T; Marques AP; Reis RL; Demirci U
    Adv Mater; 2021 Dec; 33(52):e2105361. PubMed ID: 34617338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Hydrogel-Based Biomedical Photonics: Design, Fabrication, and Applications.
    Guimarães CF; Ahmed R; Marques AP; Reis RL; Demirci U
    Adv Mater; 2021 Jun; 33(23):e2006582. PubMed ID: 33929771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient taper optical hydrogel fiber coupler drawn from suspended photocuring 3D printing.
    Zhuo X; Zhou L; Bian Y; Shen H
    Opt Lett; 2022 Oct; 47(19):4853-4856. PubMed ID: 36181134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels.
    Sun X; Tyagi P; Agate S; McCord MG; Lucia LA; Pal L
    Carbohydr Polym; 2020 Apr; 234():115898. PubMed ID: 32070518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogel optical fibers for continuous glucose monitoring.
    Elsherif M; Hassan MU; Yetisen AK; Butt H
    Biosens Bioelectron; 2019 Jul; 137():25-32. PubMed ID: 31077987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Polysaccharide-Based Physical Hydrogels and Their Potential Applications for Biomedical and Wastewater Treatment.
    Hu X; Zhang L; Yan L; Tang L
    Macromol Biosci; 2022 Sep; 22(9):e2200153. PubMed ID: 35584011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications.
    Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels.
    Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared optical response of thin film pH-sensitive hydrogel coated on a gold nanocrescent array.
    Jiang H; Markowski J; Sabarinathan J
    Opt Express; 2009 Nov; 17(24):21802-7. PubMed ID: 19997424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering.
    Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Bioprinting of Cell-Laden Constructs Using Polysaccharide-Based Self-Healing Hydrogels.
    Kim SW; Kim DY; Roh HH; Kim HS; Lee JW; Lee KY
    Biomacromolecules; 2019 May; 20(5):1860-1866. PubMed ID: 30912929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications.
    Shin JY; Yeo YH; Jeong JE; Park SA; Park WH
    Carbohydr Polym; 2020 Jun; 238():116192. PubMed ID: 32299570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin hydrogel films for rapid optical biosensing.
    Zhang X; Guan Y; Zhang Y
    Biomacromolecules; 2012 Jan; 13(1):92-7. PubMed ID: 22136353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofabrication of muscle fibers enhanced with plant viral nanoparticles using surface chaotic flows.
    Frías-Sánchez AI; Quevedo-Moreno DA; Samandari M; Tavares-Negrete JA; Sánchez-Rodríguez VH; González-Gamboa I; Ponz F; Alvarez MM; Trujillo-de Santiago G
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33418551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D bioprinting of complex channels within cell-laden hydrogels.
    Ji S; Almeida E; Guvendiren M
    Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design Strategies of Conductive Hydrogel for Biomedical Applications.
    Xu J; Tsai YL; Hsu SH
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33202861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation processed hydrogel of poly (vinyl alcohol) with biodegradable polysaccharides.
    Chowdhury MN; Alam AK; Dafader NC; Haque ME; Akhtar F; Ahmed MU; Rashid H; Begum R
    Biomed Mater Eng; 2006; 16(3):223-8. PubMed ID: 16518021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.