BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34617679)

  • 1. Furfural and 5-Hydroxymethylfurfural Production from Sugar Mixture Using Deep Eutectic Solvent/MIBK System.
    Rusanen A; Lappalainen K; Kärkkäinen J; Lassi U
    ChemistryOpen; 2021 Oct; 10(10):1004-1012. PubMed ID: 34617679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous production of furfural, lignin and cellulose-rich residue from Eucalyptus urophylla × E. grandis by ChCl/1,2-propanediol/MIBK biphasic system pretreatment.
    Yue Z; Sun LL; Wen JL; Yao SQ; Sun SN; Cao XF
    Int J Biol Macromol; 2024 Jun; 275(Pt 1):133522. PubMed ID: 38945325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous-Natural Deep Eutectic Solvent-Enhanced 5-Hydroxymethylfurfural Production from Glucose, Starch, and Food Wastes.
    Zuo M; Wang X; Wang Q; Zeng X; Lin L
    ChemSusChem; 2022 Jul; 15(13):e202101889. PubMed ID: 34730878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of deep eutectic solvent and functionalized metal-organic frameworks as a green process for the production of 5-hydroxymethylfurfural and furfural from sugars.
    Huynh QT; Huang Q; Leu SY; Lin YC; Liao CS; Chang KL
    Chemosphere; 2023 Nov; 342():140126. PubMed ID: 37690555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot selective conversion of lignocellulosic biomass into furfural and co-products using aqueous choline chloride/methyl isobutyl ketone biphasic solvent system.
    Chen Z; Bai X; Lusi A; Jacoby WA; Wan C
    Bioresour Technol; 2019 Oct; 289():121708. PubMed ID: 31271914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Conversion of Xylan into Furfural using Acidic Deep Eutectic Solvents with Dual Solvent and Catalyst Behavior.
    Morais ES; Freire MG; Freire CSR; Coutinho JAP; Silvestre AJD
    ChemSusChem; 2020 Feb; 13(4):784-790. PubMed ID: 31846225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignocellulose fractionation into furfural and glucose by AlCl
    Wang ZK; Shen XJ; Chen JJ; Jiang YQ; Hu ZY; Wang X; Liu L
    Int J Biol Macromol; 2018 Oct; 117():721-726. PubMed ID: 29864537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation into Lewis and Brønsted acid interactions between metal chloride and aqueous choline chloride-oxalic acid for enhanced furfural production from lignocellulosic biomass.
    Lee CBTL; Wu TY; Yong KJ; Cheng CK; Siow LF; Jahim JM
    Sci Total Environ; 2022 Jun; 827():154049. PubMed ID: 35202677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated deep eutectic solvent-ionic liquid-metal catalyst system for lignin and 5-hydroxymethylfurfural production from lignocellulosic biomass: Technoeconomic analysis.
    Zhao J; Lee J; Wang D
    Bioresour Technol; 2022 Jul; 356():127277. PubMed ID: 35545207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valorization of Biomass to Furfural by Chestnut Shell-based Solid Acid in Methyl Isobutyl Ketone-Water-Sodium Chloride System.
    Zha J; Fan B; He J; He YC; Ma C
    Appl Biochem Biotechnol; 2022 May; 194(5):2021-2035. PubMed ID: 35015216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-Controlled Efficient Conversion of Hemicellulose to Furfural Using Choline-Based Deep Eutectic Solvents as Catalysts.
    Arora S; Gupta N; Singh V
    ChemSusChem; 2021 Sep; 14(18):3953-3958. PubMed ID: 34324272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Extraction of Fermentation Inhibitors by Means of Green Hydrophobic Deep Eutectic Solvents.
    Makoś-Chełstowska P; Słupek E; Kucharska K; Kramarz A; Gębicki J
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave effects in the dilute acid hydrolysis of cellulose to 5-hydroxymethylfurfural.
    Sweygers N; Alewaters N; Dewil R; Appels L
    Sci Rep; 2018 May; 8(1):7719. PubMed ID: 29769623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of Glucose to 5-Hydroxymethylfurfural in a Microreactor.
    Tongtummachat T; Akkarawatkhoosith N; Kaewchada A; Jaree A
    Front Chem; 2019; 7():951. PubMed ID: 32039159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic Transformation of Lignocellulosic Biomass into Arenes, 5-Hydroxymethylfurfural, and Furfural.
    Guo T; Li X; Liu X; Guo Y; Wang Y
    ChemSusChem; 2018 Aug; 11(16):2758-2765. PubMed ID: 30009402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-assisted deep eutectic solvents/dimethyl sulfoxide system for efficient valorization of sugar bagasse waste into platform chemicals: A biorefinery approach for circular bioeconomy.
    Amesho KTT; Cheng PC; Chang KL; Peng YP; Jhang SR; Lin YC
    Bioresour Technol; 2022 Nov; 363():127969. PubMed ID: 36122844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing enzymatic digestibility of bamboo residues using a three-constituent deep eutectic solvent pretreatment.
    Li N; Meng F; Yang H; Shi Z; Zhao P; Yang J
    Bioresour Technol; 2022 Feb; 346():126639. PubMed ID: 34971777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of bio-carbohydrates to 5-hydroxymethylfurfural in three-component deep eutectic solvent.
    Zhang H; Liu X; Han M; Zhang R
    RSC Adv; 2022 May; 12(23):14957-14963. PubMed ID: 35702210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose.
    Yang Y; Hu CW; Abu-Omar MM
    ChemSusChem; 2012 Feb; 5(2):405-10. PubMed ID: 22315196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Furfural Production in Deep Eutectic Solvents Comprising Alkali Metal Halides as Additives.
    Morais ES; Freire MG; Freire CSR; Silvestre AJD
    Molecules; 2021 Dec; 26(23):. PubMed ID: 34885956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.