These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34617758)

  • 1. Combined High-Pressure and Multiquantum NMR and Molecular Simulation Propose a Role for N-Terminal Salt Bridges in Amyloid-Beta.
    Vemulapalli SPB; Becker S; Griesinger C; Rezaei-Ghaleh N
    J Phys Chem Lett; 2021 Oct; 12(40):9933-9939. PubMed ID: 34617758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turn plasticity distinguishes different modes of amyloid-β aggregation.
    Rezaei-Ghaleh N; Amininasab M; Giller K; Kumar S; Stündl A; Schneider A; Becker S; Walter J; Zweckstetter M
    J Am Chem Soc; 2014 Apr; 136(13):4913-9. PubMed ID: 24617810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics study of Zn(aβ) and Zn(aβ)2.
    Pan L; Patterson JC
    PLoS One; 2013; 8(9):e70681. PubMed ID: 24086248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation Interferes with Maturation of Amyloid-β Fibrillar Structure in the N Terminus.
    Rezaei-Ghaleh N; Kumar S; Walter J; Zweckstetter M
    J Biol Chem; 2016 Jul; 291(31):16059-67. PubMed ID: 27252381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aβ monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach.
    Rosenman DJ; Connors CR; Chen W; Wang C; García AE
    J Mol Biol; 2013 Sep; 425(18):3338-59. PubMed ID: 23811057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the N-terminus for the stability of an amyloid-β fibril with three-fold symmetry.
    Söldner CA; Sticht H; Horn AHC
    PLoS One; 2017; 12(10):e0186347. PubMed ID: 29023579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dihydrochalcone molecules destabilize Alzheimer's amyloid-β protofibrils through binding to the protofibril cavity.
    Jin Y; Sun Y; Lei J; Wei G
    Phys Chem Chem Phys; 2018 Jun; 20(25):17208-17217. PubMed ID: 29900443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pH on Aβ
    Zhao W; Ai H
    Chemphyschem; 2018 May; 19(9):1103-1116. PubMed ID: 29380494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of amyloid-β(16-22) peptide aggregation at air-water interfaces.
    Okumura H; Itoh SG
    J Chem Phys; 2020 Mar; 152(9):095101. PubMed ID: 33480728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical modifications of amyloid-β(1-42) have a significant impact on the repertoire of brain amyloid-β(1-42) binding proteins.
    Medvedev AE; Buneeva OA; Kopylov AT; Mitkevich VA; Kozin SA; Zgoda VG; Makarov AA
    Biochimie; 2016; 128-129():55-8. PubMed ID: 27400251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity.
    Aleksis R; Oleskovs F; Jaudzems K; Pahnke J; Biverstål H
    Biochimie; 2017 Sep; 140():176-192. PubMed ID: 28751216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamics of amyloid-β segmental polymorphisms.
    Berhanu WM; Hansmann UH
    PLoS One; 2012; 7(7):e41479. PubMed ID: 22911797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early Divergence in Misfolding Pathways of Amyloid-Beta Peptides.
    Mamone S; Glöggler S; Becker S; Rezaei-Ghaleh N
    Chemphyschem; 2021 Nov; 22(21):2158-2163. PubMed ID: 34355840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal Binding to Amyloid-β
    Mutter ST; Turner M; Deeth RJ; Platts JA
    ACS Chem Neurosci; 2018 Nov; 9(11):2795-2806. PubMed ID: 29898363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zn(++) binding disrupts the Asp(23)-Lys(28) salt bridge without altering the hairpin-shaped cross-β Structure of Aβ(42) amyloid aggregates.
    Mithu VS; Sarkar B; Bhowmik D; Chandrakesan M; Maiti S; Madhu PK
    Biophys J; 2011 Dec; 101(11):2825-32. PubMed ID: 22261072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-state NMR reveals a comprehensive view of the dynamics of the flexible, disordered N-terminal domain of amyloid-β fibrils.
    Au DF; Ostrovsky D; Fu R; Vugmeyster L
    J Biol Chem; 2019 Apr; 294(15):5840-5853. PubMed ID: 30737281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study.
    Sun Y; Qian Z; Wei G
    Phys Chem Chem Phys; 2016 May; 18(18):12582-91. PubMed ID: 27091578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding, conformational transition and dimerization of amyloid-β peptide on GM1-containing ternary membrane: insights from molecular dynamics simulation.
    Manna M; Mukhopadhyay C
    PLoS One; 2013; 8(8):e71308. PubMed ID: 23951128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics of the Abeta(21-30) peptide from the interplay of NMR experiments and molecular simulations.
    Fawzi NL; Phillips AH; Ruscio JZ; Doucleff M; Wemmer DE; Head-Gordon T
    J Am Chem Soc; 2008 May; 130(19):6145-58. PubMed ID: 18412346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micelle-like architecture of the monomer ensemble of Alzheimer's amyloid-β peptide in aqueous solution and its implications for Aβ aggregation.
    Vitalis A; Caflisch A
    J Mol Biol; 2010 Oct; 403(1):148-165. PubMed ID: 20709081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.