These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 34618023)

  • 1. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato.
    Ko HY; Ho LH; Neuhaus HE; Guo WJ
    Plant Physiol; 2021 Dec; 187(4):2230-2245. PubMed ID: 34618023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sugar transporter inventory of tomato: genome-wide identification and expression analysis.
    Reuscher S; Akiyama M; Yasuda T; Makino H; Aoki K; Shibata D; Shiratake K
    Plant Cell Physiol; 2014 Jun; 55(6):1123-41. PubMed ID: 24833026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural genetic variation for expression of a SWEET transporter among wild species of Solanum lycopersicum (tomato) determines the hexose composition of ripening tomato fruit.
    Shammai A; Petreikov M; Yeselson Y; Faigenboim A; Moy-Komemi M; Cohen S; Cohen D; Besaulov E; Efrati A; Houminer N; Bar M; Ast T; Schuldiner M; Klemens PAW; Neuhaus E; Baxter CJ; Rickett D; Bonnet J; White R; Giovannoni JJ; Levin I; Schaffer A
    Plant J; 2018 Oct; 96(2):343-357. PubMed ID: 30044900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of sucrose transporter gene PbSUT2 from Pyrus bretschneideri, enhances sucrose content in Solanum lycopersicum fruit.
    Wang LF; Qi XX; Huang XS; Xu LL; Jin C; Wu J; Zhang SL
    Plant Physiol Biochem; 2016 Aug; 105():150-161. PubMed ID: 27105422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sucrose transport and phloem unloading in peach fruit: potential role of two transporters localized in different cell types.
    Zanon L; Falchi R; Santi S; Vizzotto G
    Physiol Plant; 2015 Jun; 154(2):179-93. PubMed ID: 25348206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sucrose transporter in rice.
    Wu Y; Fang W; Peng W; Jiang M; Chen G; Xiong F
    Plant Signal Behav; 2021 Nov; 16(11):1952373. PubMed ID: 34269147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar uptake in the Aril of litchi fruit depends on the apoplasmic post-phloem transport and the activity of proton pumps and the putative transporter LcSUT4.
    Wang TD; Zhang HF; Wu ZC; Li JG; Huang XM; Wang HC
    Plant Cell Physiol; 2015 Feb; 56(2):377-87. PubMed ID: 25432972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular regulation of seed and fruit set.
    Ruan YL; Patrick JW; Bouzayen M; Osorio S; Fernie AR
    Trends Plant Sci; 2012 Nov; 17(11):656-65. PubMed ID: 22776090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of sugar transporters to crop yield and fruit quality.
    Wen S; Neuhaus HE; Cheng J; Bie Z
    J Exp Bot; 2022 Apr; 73(8):2275-2289. PubMed ID: 35139196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switch from symplasmic to aspoplasmic phloem unloading in Xanthoceras sorbifolia fruit and sucrose influx XsSWEET10 as a key candidate for Sugar transport.
    Guo Y; Song H; Zhao Y; Qin X; Cao Y; Zhang L
    Plant Sci; 2021 Dec; 313():111089. PubMed ID: 34763874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage.
    Hu L; Sun H; Li R; Zhang L; Wang S; Sui X; Zhang Z
    Plant Cell Environ; 2011 Nov; 34(11):1835-48. PubMed ID: 21707653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security.
    Braun DM; Wang L; Ruan YL
    J Exp Bot; 2014 Apr; 65(7):1713-35. PubMed ID: 24347463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional disruption of cell wall invertase inhibitor by genome editing increases sugar content of tomato fruit without decrease fruit weight.
    Kawaguchi K; Takei-Hoshi R; Yoshikawa I; Nishida K; Kobayashi M; Kusano M; Lu Y; Ariizumi T; Ezura H; Otagaki S; Matsumoto S; Shiratake K
    Sci Rep; 2021 Nov; 11(1):21534. PubMed ID: 34728724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MADS-box genes expressed during tomato seed and fruit development.
    Busi MV; Bustamante C; D'Angelo C; Hidalgo-Cuevas M; Boggio SB; Valle EM; Zabaleta E
    Plant Mol Biol; 2003 Jul; 52(4):801-15. PubMed ID: 13677468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of SWEET4 proteins in the post-phloem sugar transport pathway of Setaria viridis sink tissues.
    Chen L; Ganguly DR; Shafik SH; Danila F; Grof CPL; Sharwood RE; Furbank RT
    J Exp Bot; 2023 May; 74(10):2968-2986. PubMed ID: 36883216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level.
    Jin Y; Ni DA; Ruan YL
    Plant Cell; 2009 Jul; 21(7):2072-89. PubMed ID: 19574437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexose translocation mediated by SlSWEET5b is required for pollen maturation in Solanum lycopersicum.
    Ko HY; Tseng HW; Ho LH; Wang L; Chang TF; Lin A; Ruan YL; Neuhaus HE; Guo WJ
    Plant Physiol; 2022 May; 189(1):344-359. PubMed ID: 35166824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SlKIX8 and SlKIX9 are negative regulators of leaf and fruit growth in tomato.
    Swinnen G; Mauxion JP; Baekelandt A; De Clercq R; Van Doorsselaere J; Inzé D; Gonzalez N; Goossens A; Pauwels L
    Plant Physiol; 2022 Jan; 188(1):382-396. PubMed ID: 34601614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic analysis of the sugar accumulation mechanism in sucrose- and hexose- accumulating cherry tomato fruits.
    Sun L; Wang J; Lian L; Song J; Du X; Liu W; Zhao W; Yang L; Li C; Qin Y; Yang R
    BMC Plant Biol; 2022 Jun; 22(1):303. PubMed ID: 35729535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two Members of the Aluminum-Activated Malate Transporter Family, SlALMT4 and SlALMT5, are Expressed during Fruit Development, and the Overexpression of SlALMT5 Alters Organic Acid Contents in Seeds in Tomato (Solanum lycopersicum).
    Sasaki T; Tsuchiya Y; Ariyoshi M; Nakano R; Ushijima K; Kubo Y; Mori IC; Higashiizumi E; Galis I; Yamamoto Y
    Plant Cell Physiol; 2016 Nov; 57(11):2367-2379. PubMed ID: 27615796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.