BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 34618222)

  • 1. Motor cortex plasticity and visuomotor skill learning in upper and lower limbs of endurance-trained cyclists.
    Hand BJ; Opie GM; Sidhu SK; Semmler JG
    Eur J Appl Physiol; 2022 Jan; 122(1):169-184. PubMed ID: 34618222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor cortex plasticity is greater in endurance-trained cyclists following acute exercise.
    Hand BJ; Opie GM; Sidhu SK; Semmler JG
    J Appl Physiol (1985); 2022 Oct; 133(4):932-944. PubMed ID: 36074926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracortical facilitation and inhibition in human primary motor cortex during motor skill acquisition.
    Ho K; Cirillo J; Ren A; Byblow WD
    Exp Brain Res; 2022 Dec; 240(12):3289-3304. PubMed ID: 36308563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neck muscle fatigue impacts plasticity and sensorimotor integration in cerebellum and motor cortex in response to novel motor skill acquisition.
    Zabihhosseinian M; Yielder P; Berkers V; Ambalavanar U; Holmes M; Murphy B
    J Neurophysiol; 2020 Sep; 124(3):844-855. PubMed ID: 32755363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acquisition of motor memory determines the interindividual variability of learning-induced plasticity in the primary motor cortex.
    Hirano M; Kubota S; Koizume Y; Funase K
    J Appl Physiol (1985); 2018 Oct; 125(4):990-998. PubMed ID: 29975602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans.
    Perez MA; Lungholt BK; Nyborg K; Nielsen JB
    Exp Brain Res; 2004 Nov; 159(2):197-205. PubMed ID: 15549279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticomotor excitability and plasticity following complex visuomotor training in young and old adults.
    Cirillo J; Todd G; Semmler JG
    Eur J Neurosci; 2011 Dec; 34(11):1847-56. PubMed ID: 22004476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term immobilization influences use-dependent cortical plasticity and fine motor performance.
    Opie GM; Evans A; Ridding MC; Semmler JG
    Neuroscience; 2016 Aug; 330():247-56. PubMed ID: 27282084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulations of corticospinal excitability following rapid ankle dorsiflexion in skill- and endurance-trained athletes.
    Hu N; Avela J; Kidgell DJ; Piirainen JM; Walker S
    Eur J Appl Physiol; 2022 Sep; 122(9):2099-2109. PubMed ID: 35729431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning.
    Kobayashi M
    Restor Neurol Neurosci; 2010; 28(4):437-48. PubMed ID: 20714068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes in corticospinal excitability and intracortical inhibition after upper extremity motor learning: a systematic review and meta-analysis.
    Berghuis KMM; Semmler JG; Opie GM; Post AK; Hortobágyi T
    Neurobiol Aging; 2017 Jul; 55():61-71. PubMed ID: 28431286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential modulation of motor cortex plasticity in skill- and endurance-trained athletes.
    Kumpulainen S; Avela J; Gruber M; Bergmann J; Voigt M; Linnamo V; Mrachacz-Kersting N
    Eur J Appl Physiol; 2015 May; 115(5):1107-15. PubMed ID: 25549788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary motor cortex function and motor skill acquisition: insights from threshold-hunting TMS.
    Cirillo J; Semmler JG; Mooney RA; Byblow WD
    Exp Brain Res; 2020 Aug; 238(7-8):1745-1757. PubMed ID: 32222776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms controlling motor output to a transfer hand after learning a sequential pinch force skill with the opposite hand.
    Camus M; Ragert P; Vandermeeren Y; Cohen LG
    Clin Neurophysiol; 2009 Oct; 120(10):1859-65. PubMed ID: 19766535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concurrent TMS to the primary motor cortex augments slow motor learning.
    Narayana S; Zhang W; Rogers W; Strickland C; Franklin C; Lancaster JL; Fox PT
    Neuroimage; 2014 Jan; 85 Pt 3(0 3):971-84. PubMed ID: 23867557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurophysiology of motor skill learning in chronic stroke.
    Mooney RA; Cirillo J; Stinear CM; Byblow WD
    Clin Neurophysiol; 2020 Apr; 131(4):791-798. PubMed ID: 32066097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interindividual Variability in Use-Dependent Plasticity Following Visuomotor Learning: The Effect of Handedness and Muscle Trained.
    van de Ruit M; Grey MJ
    J Mot Behav; 2019; 51(2):171-184. PubMed ID: 29611783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term motor skill training with individually adjusted progressive difficulty enhances learning and promotes corticospinal plasticity.
    Christiansen L; Larsen MN; Madsen MJ; Grey MJ; Nielsen JB; Lundbye-Jensen J
    Sci Rep; 2020 Sep; 10(1):15588. PubMed ID: 32973251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurophysiological mechanisms underlying motor skill learning in young and older adults.
    Mooney RA; Cirillo J; Byblow WD
    Exp Brain Res; 2019 Sep; 237(9):2331-2344. PubMed ID: 31289887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions Among Learning Stage, Retention, and Primary Motor Cortex Excitability in Motor Skill Learning.
    Hirano M; Kubota S; Tanabe S; Koizume Y; Funase K
    Brain Stimul; 2015; 8(6):1195-204. PubMed ID: 26256670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.