These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34618676)

  • 1. Electrotactile and Vibrotactile Feedback Enable Similar Performance in Psychometric Tests and Closed-Loop Control.
    Dideriksen J; Markovic M; Lemling S; Farina D; Dosen S
    IEEE Trans Haptics; 2022; 15(1):222-231. PubMed ID: 34618676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A compact system for simultaneous stimulation and recording for closed-loop myoelectric control.
    Garenfeld MA; Jorgovanovic N; Ilic V; Strbac M; Isakovic M; Dideriksen JL; Dosen S
    J Neuroeng Rehabil; 2021 May; 18(1):87. PubMed ID: 34034762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of the stimulation frequency on closed-loop control with electrotactile feedback.
    Paredes LP; Dosen S; Rattay F; Graimann B; Farina D
    J Neuroeng Rehabil; 2015 Apr; 12():35. PubMed ID: 25889752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HyVE: hybrid vibro-electrotactile stimulation for sensory feedback and substitution in rehabilitation.
    D'Alonzo M; Dosen S; Cipriani C; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):290-301. PubMed ID: 23782817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-loop Control using Electrotactile Feedback Encoded in Frequency and Pulse Width.
    Dideriksen JL; Mercader IU; Dosen S
    IEEE Trans Haptics; 2020; 13(4):818-824. PubMed ID: 32287006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined spatial and frequency encoding for electrotactile feedback of myoelectric signals.
    Nataletti S; Leo F; Dideriksen J; Brayda L; Dosen S
    Exp Brain Res; 2022 Sep; 240(9):2285-2298. PubMed ID: 35879359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HyVE-hybrid vibro-electrotactile stimulation-is an efficient approach to multi-channel sensory feedback.
    D'Alonzo M; Dosen S; Cipriani C; Farina D
    IEEE Trans Haptics; 2014; 7(2):181-90. PubMed ID: 24968382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-division multiplexing for myoelectric closed-loop control using electrotactile feedback.
    Dosen S; Schaeffer MC; Farina D
    J Neuroeng Rehabil; 2014 Sep; 11():138. PubMed ID: 25224266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Transition Impairs Discrimination of Electrotactile Frequencies.
    Gholinezhad S; Dosen S; Dideriksen J
    IEEE Trans Haptics; 2022; 15(4):753-758. PubMed ID: 36129873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multichannel Electrotactile Feedback With Spatial and Mixed Coding for Closed-Loop Control of Grasping Force in Hand Prostheses.
    Dosen S; Markovic M; Strbac M; Belic M; Kojic V; Bijelic G; Keller T; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):183-195. PubMed ID: 27071179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online Closed-Loop Control Using Tactile Feedback Delivered Through Surface and Subdermal Electrotactile Stimulation.
    Dong J; Jensen W; Geng B; Kamavuako EN; Dosen S
    Front Neurosci; 2021; 15():580385. PubMed ID: 33679292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Psychometric characterization of incidental feedback sources during grasping with a hand prosthesis.
    Wilke MA; Niethammer C; Meyer B; Farina D; Dosen S
    J Neuroeng Rehabil; 2019 Dec; 16(1):155. PubMed ID: 31823792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multichannel electrotactile feedback for simultaneous and proportional myoelectric control.
    Patel GK; Dosen S; Castellini C; Farina D
    J Neural Eng; 2016 Oct; 13(5):056015. PubMed ID: 27618968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrotactile EMG feedback improves the control of prosthesis grasping force.
    Schweisfurth MA; Markovic M; Dosen S; Teich F; Graimann B; Farina D
    J Neural Eng; 2016 Oct; 13(5):056010. PubMed ID: 27547992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards optimizing the non-invasive sensory feedback interfaces in a neural prosthetic control.
    Su S; Chai G; Meng J; Sheng X; Mouraux A; Zhu X
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35073525
    [No Abstract]   [Full Text] [Related]  

  • 16. Psychophysical correspondence between vibrotactile intensity and intracortical microstimulation for tactile neuroprostheses in rats.
    Devecioğlu İ; Güçlü B
    J Neural Eng; 2017 Feb; 14(1):016010. PubMed ID: 27991426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Tactile Sensory Substitution on the Proprioceptive Error Map of the Arm.
    Tanner J; Orthlieb G; Shumate D; Helms Tillery S
    Front Neurosci; 2021; 15():586740. PubMed ID: 34305509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrotactile feedback outweighs natural feedback in sensory integration during control of grasp force.
    Gholinezhad S; Dosen S; Jakob D
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34416740
    [No Abstract]   [Full Text] [Related]  

  • 19. Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses.
    Witteveen HJ; Droog EA; Rietman JS; Veltink PH
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2219-26. PubMed ID: 22645262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmenting sensorimotor control using "goal-aware" vibrotactile stimulation during reaching and manipulation behaviors.
    Tzorakoleftherakis E; Murphey TD; Scheidt RA
    Exp Brain Res; 2016 Aug; 234(8):2403-14. PubMed ID: 27074942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.