These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34619030)

  • 1. RealVS: Toward Enhancing the Precision of Top Hits in Ligand-Based Virtual Screening of Drug Leads from Large Compound Databases.
    Yin Y; Hu H; Yang Z; Xu H; Wu J
    J Chem Inf Model; 2021 Oct; 61(10):4924-4939. PubMed ID: 34619030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFSE: towards improving model generalization of deep graph learning of ligand bioactivities targeting GPCR proteins.
    Yin Y; Hu H; Yang Z; Jiang F; Huang Y; Wu J
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35348582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer learning with molecular graph convolutional networks for accurate modeling and representation of bioactivities of ligands targeting GPCRs without sufficient data.
    Wu J; Lan C; Mei Z; Chen X; Zhu Y; Hu H; Diao Y
    Comput Biol Chem; 2022 Jun; 98():107664. PubMed ID: 35325760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WDL-RF: predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest.
    Wu J; Zhang Q; Wu W; Pang T; Hu H; Chan WKB; Ke X; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2271-2282. PubMed ID: 29432522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening.
    Zhou H; Cao H; Skolnick J
    J Chem Inf Model; 2021 Apr; 61(4):2074-2089. PubMed ID: 33724022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OLB-AC: toward optimizing ligand bioactivities through deep graph learning and activity cliffs.
    Yin Y; Hu H; Yang J; Ye C; Goh WWB; Kong AW; Wu J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38889277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homologous G Protein-Coupled Receptors Boost the Modeling and Interpretation of Bioactivities of Ligand Molecules.
    Wu J; Sun Y; Chan WKB; Zhu Y; Zhu W; Huang W; Hu H; Yan S; Pang T; Ke X; Li F
    J Chem Inf Model; 2020 Mar; 60(3):1865-1875. PubMed ID: 32040913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mRAISE: an alternative algorithmic approach to ligand-based virtual screening.
    von Behren MM; Bietz S; Nittinger E; Rarey M
    J Comput Aided Mol Des; 2016 Aug; 30(8):583-94. PubMed ID: 27565795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting target-ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery.
    Ruiz Puentes P; Rueda-Gensini L; Valderrama N; Hernández I; González C; Daza L; Muñoz-Camargo C; Cruz JC; Arbeláez P
    Sci Rep; 2022 May; 12(1):8434. PubMed ID: 35589824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated in silico-in vitro strategy for screening of some traditional Egyptian plants for human aromatase inhibitors.
    Dawood HM; Ibrahim RS; Shawky E; Hammoda HM; Metwally AM
    J Ethnopharmacol; 2018 Oct; 224():359-372. PubMed ID: 29909120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise modelling and interpretation of bioactivities of ligands targeting G protein-coupled receptors.
    Wu J; Liu B; Chan WKB; Wu W; Pang T; Hu H; Yan S; Ke X; Zhang Y
    Bioinformatics; 2019 Jul; 35(14):i324-i332. PubMed ID: 31510691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of ligand-based virtual screening web tools and screening algorithms in large molecular databases in the age of big data.
    Banegas-Luna AJ; Cerón-Carrasco JP; Pérez-Sánchez H
    Future Med Chem; 2018 Nov; 10(22):2641-2658. PubMed ID: 30499744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FINDSITE(comb): a threading/structure-based, proteomic-scale virtual ligand screening approach.
    Zhou H; Skolnick J
    J Chem Inf Model; 2013 Jan; 53(1):230-40. PubMed ID: 23240691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FaissMolLib: An efficient and easy deployable tool for ligand-based virtual screening.
    Liu H; Chen P; Hu B; Wang S; Wang H; Luan J; Wang J; Lin B; Cheng M
    Comput Biol Chem; 2024 Jun; 110():108057. PubMed ID: 38581840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepMalaria: Artificial Intelligence Driven Discovery of Potent Antiplasmodials.
    Keshavarzi Arshadi A; Salem M; Collins J; Yuan JS; Chakrabarti D
    Front Pharmacol; 2019; 10():1526. PubMed ID: 32009951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of New and Potent Lead Molecules Against CAAX Prenyl Protease I of Leishmania donovani Through Pharmacophore Based Virtual Screening Approach.
    Prabhu SV; Tiwari K; Suryanarayanan V; Dubey VK; Singh SK
    Comb Chem High Throughput Screen; 2017; 20(3):255-271. PubMed ID: 28116998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Ligand-based Big Data Deep Neural Network Models for Virtual Screening of Large Compound Libraries.
    Xiao T; Qi X; Chen Y; Jiang Y
    Mol Inform; 2018 Nov; 37(11):e1800031. PubMed ID: 29882343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BEAR: A Novel Virtual Screening Method Based on Large-Scale Bioactivity Data.
    Kwon Y; Park S; Lee J; Kang J; Lee HJ; Kim W
    J Chem Inf Model; 2023 Mar; 63(5):1429-1437. PubMed ID: 36821004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. REPROVIS-DB: a benchmark system for ligand-based virtual screening derived from reproducible prospective applications.
    Ripphausen P; Wassermann AM; Bajorath J
    J Chem Inf Model; 2011 Oct; 51(10):2467-73. PubMed ID: 21902278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.