These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34619138)

  • 1. High-throughput screening alternative to crystal violet biofilm assay combining fluorescence quantification and imaging.
    Amador CI; Stannius RO; Røder HL; Burmølle M
    J Microbiol Methods; 2021 Nov; 190():106343. PubMed ID: 34619138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-abundant species facilitates specific spatial organization that promotes multispecies biofilm formation.
    Liu W; Russel J; Røder HL; Madsen JS; Burmølle M; Sørensen SJ
    Environ Microbiol; 2017 Jul; 19(7):2893-2905. PubMed ID: 28618083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofilm Formation and Quantification Using the 96-Microtiter Plate.
    Thibeaux R; Kainiu M; Goarant C
    Methods Mol Biol; 2020; 2134():207-214. PubMed ID: 32632872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust biofilm assay for quantification and high throughput screening applications.
    Rajamani S; Sandy R; Kota K; Lundh L; Gomba G; Recabo K; Duplantier A; Panchal RG
    J Microbiol Methods; 2019 Apr; 159():179-185. PubMed ID: 30826440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput screening of multispecies biofilm formation and quantitative PCR-based assessment of individual species proportions, useful for exploring interspecific bacterial interactions.
    Ren D; Madsen JS; de la Cruz-Perera CI; Bergmark L; Sørensen SJ; Burmølle M
    Microb Ecol; 2014 Jul; 68(1):146-54. PubMed ID: 24337804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of early biofilm growth in microtiter plates through a novel image analysis software.
    Castilla-Sedano AJ; Zapana-García J; Valdivia-Del Águila E; Padilla-Huamantinco PG; Guerra DG
    J Microbiol Methods; 2024 Aug; 223():106979. PubMed ID: 38944284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of Staphylococcus aureus Biofilm Formation by Crystal Violet and Confocal Microscopy.
    Grossman AB; Burgin DJ; Rice KC
    Methods Mol Biol; 2021; 2341():69-78. PubMed ID: 34264462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying implant-associated biofilms: Comparison of microscopic, microbiologic and biochemical methods.
    Doll K; Jongsthaphongpun KL; Stumpp NS; Winkel A; Stiesch M
    J Microbiol Methods; 2016 Nov; 130():61-68. PubMed ID: 27444546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole slide imaging is a high-throughput method to assess Candida biofilm formation.
    Raas MWD; Silva TP; Freitas JCO; Campos LM; Fabri RL; Melo RCN
    Microbiol Res; 2021 Sep; 250():126806. PubMed ID: 34157481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of a High-Throughput 384-Well Plate-Based Screening Platform with
    Gilbert-Girard S; Savijoki K; Yli-Kauhaluoma J; Fallarero A
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32344836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A High-Throughput Microtiter Plate Screening Assay to Quantify and Differentiate Species in Dual-Species Biofilms.
    Campo-Pérez V; Alcàcer-Almansa J; Julián E; Torrents E
    Microorganisms; 2023 Sep; 11(9):. PubMed ID: 37764089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-content screening for biofilm assays.
    Peng F; Hoek EM; Damoiseaux R
    J Biomol Screen; 2010 Aug; 15(7):748-54. PubMed ID: 20639506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new device for rapid evaluation of biofilm formation potential by bacteria.
    Chavant P; Gaillard-Martinie B; Talon R; Hébraud M; Bernardi T
    J Microbiol Methods; 2007 Mar; 68(3):605-12. PubMed ID: 17218029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of biofilm biomass by staining: Non-toxic safranin can replace the popular crystal violet.
    Ommen P; Zobek N; Meyer RL
    J Microbiol Methods; 2017 Oct; 141():87-89. PubMed ID: 28802722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Alternative Approach to Investigate Biofilm in Medical Devices: A Feasibility Study.
    Petrachi T; Resca E; Piccinno MS; Biagi F; Strusi V; Dominici M; Veronesi E
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29258219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Microplate-Based System as In Vitro Model of Biofilm Growth and Quantification.
    Vandecandelaere I; Van Acker H; Coenye T
    Methods Mol Biol; 2016; 1333():53-66. PubMed ID: 26468099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New device for high-throughput viability screening of flow biofilms.
    Benoit MR; Conant CG; Ionescu-Zanetti C; Schwartz M; Matin A
    Appl Environ Microbiol; 2010 Jul; 76(13):4136-42. PubMed ID: 20435763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interspecies interactions reduce selection for a biofilm-optimized variant in a four-species biofilm model.
    Røder HL; Liu W; Sørensen SJ; Madsen JS; Burmølle M
    Environ Microbiol Rep; 2019 Dec; 11(6):835-839. PubMed ID: 31680421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A colorimetric microtiter plate method for assessment of phage effect on Pseudomonas aeruginosa biofilm.
    Knezevic P; Petrovic O
    J Microbiol Methods; 2008 Aug; 74(2-3):114-8. PubMed ID: 18433900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data Quality in Biofilm High-Throughput Routine Analysis: Intralaboratory Protocol Adaptation and Experiment Reproducibility.
    Jorge P; Lourenço A; Pereira MO
    J AOAC Int; 2015; 98(6):1721-7. PubMed ID: 26651585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.