BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34619180)

  • 1. Influencing factors and prediction of arsenic concentration in Pteris vittata: A combination of geodetector and empirical models.
    Zeng W; Wan X; Lei M; Gu G; Chen T
    Environ Pollut; 2022 Jan; 292(Pt A):118240. PubMed ID: 34619180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil texture and climate limit cultivation of the arsenic hyperaccumulator Pteris vittata for phytoextraction in a long-term field study.
    Matzen SL; Olson AL; Pallud CE
    J Hazard Mater; 2022 Aug; 436():129151. PubMed ID: 35739697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoextraction of arsenic-contaminated soil with Pteris vittata in Henan Province, China: comprehensive evaluation of remediation efficiency correcting for atmospheric depositions.
    Lei M; Wan X; Guo G; Yang J; Chen T
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):124-131. PubMed ID: 27928750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize.
    Ma J; Lei E; Lei M; Liu Y; Chen T
    Chemosphere; 2018 Mar; 194():737-744. PubMed ID: 29247933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intercropping efficiency of Pteris vittata with two legume plants: Impacts of soil arsenic concentrations.
    Wang W; Yang X; Mo Q; Li Y; Meng D; Li H
    Ecotoxicol Environ Saf; 2023 Jul; 259():115004. PubMed ID: 37196521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of Soil Moisture on Phytoremediation of As-Containinated Soils Using As-Hyperaccumulator Pteris vittata L].
    Liu QX; Yan XL; Liao XY; Lin LY; Yang J
    Huan Jing Ke Xue; 2015 Aug; 36(8):3056-61. PubMed ID: 26592040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L.
    Zheng C; Wang X; Liu J; Ji X; Huang B
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36688-36697. PubMed ID: 31741273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical Evidence of Arsenite Oxidase Gene as an Indicator Accounting for Arsenic Phytoextraction by
    Han N; Yang C; Shimomura S; Inoue C; Chien MF
    Int J Environ Res Public Health; 2022 Feb; 19(3):. PubMed ID: 35162818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal and spatial differentiation characteristics of soil arsenic during the remediation process of Pteris vittata L. and Citrus reticulata Blanco intercropping.
    Yan Y; Yang J; Wan X; Shi H; Yang J; Ma C; Lei M; Chen T
    Sci Total Environ; 2022 Mar; 812():152475. PubMed ID: 34952060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intercropping of Pteris vittata and maize on multimetal contaminated soil can achieve remediation and safe agricultural production.
    Zeng W; Wan X; Lei M; Chen T
    Sci Total Environ; 2024 Mar; 915():170074. PubMed ID: 38218467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic uptake by Pteris vittata in a subarctic arsenic-contaminated agricultural field in Japan: An 8-year study.
    Kohda YH; Endo G; Kitajima N; Sugawara K; Chien MF; Inoue C; Miyauchi K
    Sci Total Environ; 2022 Jul; 831():154830. PubMed ID: 35346712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaugmentation with As-transforming bacteria improves arsenic availability and uptake by the hyperaccumulator plant
    Abou-Shanab RAI; Santelli CM; Sadowsky MJ
    Int J Phytoremediation; 2022; 24(4):420-428. PubMed ID: 34334062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of phytoextraction efficiency coupling
    Liu ZY; Yang R; Xiang XY; Niu LL; Yin DX
    Int J Phytoremediation; 2023; 25(13):1810-1818. PubMed ID: 37066697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intercropping efficiency of four arsenic hyperaccumulator Pteris vittata populations as intercrops with Morus alba.
    Wan X; Lei M
    Environ Sci Pollut Res Int; 2018 May; 25(13):12600-12611. PubMed ID: 29468391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian network highlights the contributing factors for efficient arsenic phytoextraction by Pteris vittata in a contaminated field.
    Kudo H; Han N; Yokoyama D; Matsumoto T; Chien MF; Kikuchi J; Inoue C
    Sci Total Environ; 2023 Nov; 899():165654. PubMed ID: 37478955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhizospheric plant-microbe synergistic interactions achieve efficient arsenic phytoextraction by Pteris vittata.
    Yang C; Han N; Inoue C; Yang YL; Nojiri H; Ho YN; Chien MF
    J Hazard Mater; 2022 Jul; 434():128870. PubMed ID: 35452977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intercropped Pteris vittata L. and Morus alba L. presents a safe utilization mode for arsenic-contaminated soil.
    Wan X; Lei M; Chen T; Yang J
    Sci Total Environ; 2017 Feb; 579():1467-1475. PubMed ID: 27908626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The key nodes and main factors influencing accumulation of soil arsenic in Pteris vittata L. under field conditions.
    Yang J; Yan Y; Lu N; Wan X; Yang J; Shi H; Chen T; Lei M
    Sci Total Environ; 2022 Feb; 807(Pt 2):150787. PubMed ID: 34619206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential evaluation of different intercropping remediation modes based on remediation efficiency and economic benefits - a case study of arsenic-contaminated soil.
    Yan Y; Yang J; Guo Y; Yang J; Wan X; Zhao C; Guo J; Chen T
    Int J Phytoremediation; 2022; 24(1):25-33. PubMed ID: 33998931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactants Enhanced Soil Arsenic Phytoextraction Efficiency by Pteris vittata L.
    Xiang D; Liao S; Tu S; Zhu D; Xie T; Wang G
    Bull Environ Contam Toxicol; 2020 Feb; 104(2):259-264. PubMed ID: 31893300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.